
Software Engineering
(Part 3)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1

• Requirements
analysis

• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

Objectives

Stages of SW dev

How to order
the stages

Objectives

• We will cover these
software engineering
topics:

2

Objectives

3

Software Engineering lecture slide decks:

Part 1 Requirements analysis
Design (general)

Part 2 Design (object-oriented)
Implementation
Debugging

Part 3 Testing
Evaluation

Part 4 Maintenance
Process models

You’re reasonably sure that your code is
bug-free. What’s next?

4

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

5

Testing

• Debugging: How can I fix the system?
• Testing: How can I break the system?

6

Testing

• Testing taxonomy
– Internal testing
– External testing

• White box
• Black box

– General strategies

7

Testing: Internal

• Internal testing
– Designing your code to test itself
– Done by programmers

8

Testing: Internal

• Internal testing techniques
– Check for function/method failures
– Validate parameters
– Check invariants
– Leave testing code intact!!!

9

Testing: Internal

10

assert(count >= 0);

C: assert macro

Essentially same as:

if (count < 0)
{ fprintf(stderr,
 "assertion failed: (count >= 0),");
 fprintf(stderr,
 "function XXX, file YYY, line ZZZ.");
 exit(134);
}

gcc –D NDEBUG somefile.c

Asserts are enabled by default; to disable asserts:

Testing: Internal

11

assert count >= 0, 'count is < 0'

Python: assert statement

Essentially same as:

if count < 0:
 raise AssertionError('count is < 0')

python –O somefile.py

Asserts are enabled by default; to disable asserts:

Testing: Internal

12

assert count >= 0 : "count is < 0";

Java: assert statement (since JDK 1.4)

Essentially same as:

if (count < 0)
 throw new AssertionError("count is < 0");

java –ea SomeFile.java

Asserts are disabled by default; to enable asserts:

Testing: Internal

13

console.assert(count >= 0, 'count is < 0');

JavaScript (browsers):
console.assert function

Essentially same as:

if (count < 0)
 console.error('count is < 0');

Cannot be disabled???

Testing: Internal

14

const assert = require('assert');
…
assert(count >= 0);

JavaScript (Node.js): assert function

Essentially same as:

if (count < 0)
 throw new Error(
 'The expression evaluated to a falsy value');

Cannot be disabled!

Testing: Internal

• Assert controversy: enable or disable
asserts in production code?

15

Testing: External

• External testing
– Designing code or data to test your code

16

Testing: External: White Box

• White box external testing
– External testing with knowledge of structure

of tested code
– Done by programmers

17

Testing: External: White Box

• White box external testing techniques
– Statement testing

• Testing to make sure each statement is
executed at least once

– Path testing
• Testing to make sure each logical path is

followed at least once

18

Testing: External: White Box

• White box external testing techniques
– Boundary (corner case) testing

• Testing with input values at, just below, and just
above limits of input domain

• Testing with input values causing output values to
be at, just below, and just above the limits of the
output domain

19

Glossary of Computerized System and Software Development Terminology

Testing: External: White Box

• Tool support for statement testing
– Python: coverage

• See Assignments 1-4
• Another example...

20

• Statement testing of fractionclient.py
– See statementtesting/

• euclid.py
• fraction.py
• fractionclient.py
• buildandrun
• buildandrun.bat

Testing: External: White Box

21

• Statement testing of fractionclient.py

Testing: External: White Box

$./buildandrun

Create file .coverage
python -m coverage run frac2client.py
Numerator 1: 1
Denominator 1: 2
Numerator 2: 3
Denominator 2: 4
frac1: 1/2
frac2: 3/4
…

22

• Statement testing of fractionclient.py

Testing: External: White Box

…
frac1 hashcode: -3550055125485641917
frac1 does not equal frac2
frac1 is less than frac2
frac1 is less than or equal to frac2
-frac1: -1/2
frac1 + frac2: 5/4
frac1 - frac2: -1/4
frac1 * frac2: 3/8
frac1 / frac2: 2/3

Create directory htmlcov
python -m coverage html

View the results, htmlcov/index.html, using a browser
$

23

• Statement testing of fractionclient.py

Testing: External: White Box

24

Testing: External: White Box

25

Testing: External: White Box

26

Testing: External: White Box

27

Testing: External: White Box

Language Statement Testing Tool

Python coverage

Java JaCoCo *

C gcov *

JavaScript (browser) istanbul

JavaScript (Node.js) istanbul

* See me if you want an example

28

Testing: External: Black Box

• Black box external testing
– External testing without knowledge of

structure of tested code
– Done by quality assurance (QA) engineers

29

• Black box external testing techniques
– Use case testing

• Testing driven by use cases developed during
design

– Stress testing
• Testing with a large quantity of data
• Testing with a large variety of (random?) data

Testing: External: Black Box

30

Testing: General Strategies

• General testing strategies
– Automate the testing

• To test your programs: create scripts
• To test your modules: create software clients
• Compare implementations when possible

31

Testing: General Strategies

• Tool support for automating testing
– Python: PyUnit

• Example...

32

Testing: General Strategies

• Automated testing of fraction.py
– See testautomationgood/

• euclid.py
• fraction.py
• testfraction.py

– Instead of fractionclient.py
– Uses PyUnit

• buildandrun
• buildandrun.bat

33

Testing: General Strategies

34

$./buildandrun

Run unit tests
python testfraction.py
.....
--

Ran 5 tests in 0.000s

OK
$

Testing: General Strategies

• Automated testing of fraction.py
– See testautomationbad/

• euclid.py
• fraction.py

– Contains a logic error
• testfraction.py
• buildandrun
• buildandrun.bat

35

Testing: General Strategies

36

$./buildandrun

Run unit tests
python testfraction.py
..F..
==
==========
FAIL: runTest (__main__.MulTestCase)
--

Traceback (most recent call last):
 File "testfraction.py", line 35, in runTest
 self.assertEqual(prod, expected, 'Incorrect product')
AssertionError: <frac2.Fraction object at 0x103be6940> !=
<frac2.Fraction object at 0x103be6f40> : Incorrect product

--

Ran 5 tests in 0.001s

FAILED (failures=1)
$

Testing: General Strategies
Language Test Automation Tool

Python PyUnit

Java JUnit *

C CUnit *

JavaScript (browser) Mocha

JavaScript (Node.js) Mocha

Web apps Playwright, Selenium

* See me if you want an example

37

Testing: General Strategies

• General testing strategies (cont.)
– Test incrementally

• Use scaffolds and stubs
• Do regression testing

– Let debugging drive testing
• Reactive mode
• Proactive mode: do fault injection

38

Testing: Summary

• Testing taxonomy
– Internal testing
– External testing

• White box
• Black box

– General strategies

39

You’ve tested your code to make sure it
meets your expectations. What’s next?

40

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

41

Evaluation

• Testing
– Does the system meet your (the

programmer’s) expectations?
• Evaluation

– Does the system meet the users’
expectations?

– Does the system fulfill the needs of its users?

42

Evaluation

• Kinds of evaluation
– By users

• Actually, by software engineers in collaboration
with users

– By evaluation experts

43

Recall
requirements
gathering
techniques

Evaluation: Users

• Questionnaires
• Interviews
• Focus groups
• Direct observation

44

• Conducting interviews
– (1) Recruit a set of users
– (2) If necessary, compose a short written

intro to your system
– (3) Compose a written task sequence

• Maybe abstracted from use cases developed
during design

Evaluation: Users

45

• Conducting interviews (cont.)
– (4) For each user:

• (4.1) If necessary, give the user the short intro,
ask the user to read it, and confirm that the user
understands it

• (4.2) Give the user the task sequence
• (4.3) For each task:

– (4.3.1) Ask the user to read the task and confirm that
the users understands it

– (4.3.2) Ask the user to use your system to perform the
task

– (4.3.3) Ask (force!!!) the user to talk aloud while
performing the task

Evaluation: Users

46

• Conducting interviews (cont.)
– (5) Take copious notes
– (6) Audio/video record?
– (7) Repeat for each kind of user

Evaluation: Users

47

Evaluation: Experts

48

Jakob
Nielsen

• Heuristic Evaluation
– From Jakob Nielsen
– For evaluating the whole system generally
– Using these 10 heuristics…

Evaluation: Experts

49

• Heuristic Evaluation
– (1) Visibility of system status

• The system should always keep users
informed about what is going on, through
appropriate feedback within reasonable time.

Evaluation: Experts

50
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (2) Match between system and the real

world
• The system should speak the user's

language, with words, phrases and concepts
familiar to the user, rather than system-oriented
terms. Follow real-world conventions, making
information appear in a natural and logical order.

Evaluation: Experts

51
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (3) User control and freedom

• Users often choose system functions by
mistake and will need a clearly marked
"emergency exit" to leave the unwanted state
without having to go through an extended
dialogue. Support undo and redo.

Evaluation: Experts

52
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (4) Consistency and standards

• Users should not have to wonder whether
different words, situations, or actions mean the
same thing. Follow platform conventions.

Evaluation: Experts

53
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (5) Error prevention

• Even better than good error messages is a
careful design which prevents a problem from
occurring in the first place. Either eliminate
error-prone conditions or check for them and
present users with a confirmation option before
they commit to the action.

Evaluation: Experts

54
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (6) Recognition rather than recall

• Minimize the user's memory load by making
objects, actions, and options visible. The user
should not have to remember information from
one part of the dialogue to another. Instructions
for use of the system should be visible or easily
retrievable whenever appropriate.

Evaluation: Experts

55
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (7) Flexibility and efficiency of use

• Accelerators—unseen by the novice user—may
often speed up the interaction for the expert user
such that the system can cater to both
inexperienced and experienced users. Allow
users to tailor frequent actions.

Evaluation: Experts

56
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (8) Aesthetic and minimalist design

• Dialogues should not contain information
which is irrelevant or rarely needed. Every extra
unit of information in a dialogue competes with
the relevant units of information and diminishes
their relative visibility.

Evaluation: Experts

57
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (9) Help users recognize, diagnose, and

recover from errors
• Error messages should be expressed in plain

language (no codes), precisely indicate the
problem, and constructively suggest a solution.

Evaluation: Experts

58
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• Heuristic Evaluation
– (10) Help and documentation

• Even though it is better if the system can be used
without documentation, it may be necessary to
provide help and documentation. Any such
information should be easy to search, focused on
the user's task, list concrete steps to be carried
out, and not be too large.

Evaluation: Experts

59
 Nielsen, Jakob. Usability Engineering. Academic Press. 1994.

• For more info on heuristic evaluation:
– Wikipedia article:

https://en.wikipedia.org/wiki/Heuristic_evalua
tion

– Helen Sharp, Jenny Preece, Yvonne Rogers.
Interaction Design: Beyond
Human-Computer Interaction.

– Nielsen, Jakob. Usability Engineering.

Evaluation: Experts

60

https://en.wikipedia.org/wiki/Heuristic_evaluation
https://en.wikipedia.org/wiki/Heuristic_evaluation

• Cognitive Walkthrough
– From Cathleen Wharton, Jakob Nielsen
– For evaluating part of the system in detail

Yvonne Rogers, Helen Sharp, Jenny Preece. Interaction Design:
Beyond Human-Computer Interaction (3rd Edition). Wiley, 2011.

Evaluation: Experts

61

Repeatedly:
Will the correct action be sufficiently evident to the user?

Will the user know what to do to achieve the task?
Will the user notice that the correct action is available?

Can users see the button or menu item that they should
use for the next action?

Will the user associate and interpret the response from the
action correctly?

Will users know from the feedback that they have made
the correct or incorrect choice of action?

So the system is finished. Or is it?

62

Continued in
Software Engineering (Part 4)…

63

