
Concurrent Programming 
(Part 2)

Copyright © 2025 by
Robert M. Dondero, Ph.D.

Princeton University

1



Objectives

• We will cover:
– Concurrent processes vs. concurrent threads
– Race conditions
– Preventing race conditions
– Thread safety

2



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

3



Process vs. Thread Concurrency

• Difference #1
– Process-level concurrency

• Multiple processes run concurrently
• Parent process forks (and waits for) a child 

process
– Thread-level concurrency

• Multiple threads run concurrently within the 
same process

• Within a process, parent thread spawns (and 
joins) a child thread

4



Process vs. Thread Concurrency

• Difference #2
– Process-level concurrency

• Forking & context switching are relatively slow
– Thread-level concurrency

• Spawning & context switching are relatively fast

5



Process vs. Thread Concurrency

• Difference #3
– Process-level concurrency

• Concurrent processes do not share objects
– Thread-level concurrency

• Concurrent threads do share objects

• Elaboration…

6



Process vs. Thread Concurrency

• Process-level concurrency
– P1 and P2 do not share objects

• P1 and P2 have (initially identical but) distinct 
memory address spaces

7



RODATA

IP REG

DATA

HEAP STACK

BSS

TEXT

PROCESS P1 PROCESS P2

Concurrent Processes: Conceptually

Process vs. Thread Concurrency

8

RODATA

IP REG

DATA

HEAP STACK

BSS

TEXT



RODATA

IP REG

DATA

HEAP STACK

BSS

TEXT

PROCESS P1 PROCESS P2

Concurrent Processes: In Reality

Process vs. Thread Concurrency

9

IP REG

DATA

HEAP STACK

BSS



Process vs. Thread Concurrency

• See processsharing.py

10



Process vs. Thread Concurrency

• Thread-level concurrency
– T1 and T2 share objects

• T1 and T2 have distinct STACK sections
• T1 and T2 share the RODATA, DATA, BSS, and 

HEAP sections

11



RODATA

IP REG

DATA

HEAP

STACK

BSS

TEXT

THREAD T1 THREAD T2

Concurrent Threads

Process vs. Thread Concurrency

12

IP REG

STACK



Process vs. Thread Concurrency

• See threadsharing.py

13



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

14



Race Conditions

• Problem:
– Threads can share objects
– Danger if multiple threads update/access the 

same object concurrently
– Race condition

• Outcome depends upon thread scheduling 

15



Race Conditions

• See race.py
$ python race.py
1
2
3
4
5
6
7
8
9
6
4
10
2
0
-2
Final balance: -2
$

$ python race.py
1
2
3
4
-1
5
6
-3
-5
-7
-9
7
8
9
10
Final balance: 10
$

$ python race.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$

16



Race Conditions

• Note:
– Use of shared BankAcct object by multiple 

threads causes unpredictable behavior
– race.py contains a race condition

17



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in 

user
• Preventing race conditions: lock in 

resource
• Thread safety

18



Preventing Race Conditions: Lock 
in User

• Observation:
– While a thread is executing deposit() or 
withdraw() on a particular bank_acct 
object…

– No other thread should be able to execute 
deposit() or withdraw() on that 
bank_acct object

19



Preventing Race Conditions: Lock 
in User

• Solution: Locking
– Each object has an associated lock
– All threads that will use object X agree to a 

pact: must acquire lock on X before using X
• Current thread acquires lock on X
• Other threads cannot acquire lock on X until 

current thread releases lock on X
– (Adds lots of overhead)

20



Preventing Race Conditions: Lock 
in User

• Approach 1: Locking in user of shared 
object

21



Preventing Race Conditions: Lock 
in User

• See lockinuser.py (cont.)

22

$ python lockinuser.py
1
2
3
4
2
0
-2
-4
-6
-5
-4
-3
-2
-1
0
Final balance: 0
$ 

$ python lockinuser.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$ 



Preventing Race Conditions: Lock 
in User

• See lockinuserw.py

– Uses with statement

23



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

24



Preventing Race Conditions: Lock 
in Resource

• Approach 2: Locking in shared 
resource/object itself

25



Preventing Race Conditions: Lock 
in Resource

• See lockinresource.py (cont.)

26

$ python lockinresource.py
1
2
3
1
-1
-3
-5
-7
-6
-5
-4
-3
-2
-1
0
Final balance: 0
$ 

$ python lockinresource.py
1
2
3
4
5
6
7
8
9
10
8
6
4
2
0
Final balance: 0
$ 



Preventing Race Conditions: Lock 
in Resource

• See lockinresourcew.py

– Uses with statement

27



Preventing Race Conditions: Lock 
in Resource

• Which locking approach is better?
– User-level locking: sometimes faster
– Resource-level locking: safer

28



Agenda

• Process vs. thread concurrency
• Race conditions
• Preventing race conditions: lock in user
• Preventing race conditions: lock in 

resource
• Thread safety

29



Thread Safety

• Recall lockinresource.py
– A context switch can occur between any 2 

machine lang instructions
– Implications:

• The get_balance() method should be 
protected by locking

• The _balance field should be private
– But cannot be

30



Thread Safety

• Thread safety
– Oversimplification…
– An object is thread-safe if all of its methods 

are “locked” & all of its fields are private

31



Thread Safety

• Java
– Methods can be locked (synchronized)
– Fields can be private
– Objects can be thread-safe

• Python
– Methods can be locked
– Fields cannot be private
– Any object that has fields cannot be 

thread-safe

32



Summary

• We have covered:
– Concurrent processes vs. concurrent threads
– Race conditions
– Preventing race conditions
– Thread safety

33


