
R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,  
they also are masters of exposition. I am sure that every serious computer scientist 

will find this book rewarding in many ways.     
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing  
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to 
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary 
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer 
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data 
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for 
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and 
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, 
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of 
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code 
n An all-new chapter introducing analytic combinatorics 
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them 
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of 
Computer Programming books—and provide the background they need to keep abreast of new research. 

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University, 
where was founding chair of the computer science department and has been a member of the faculty since 
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and  
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick 
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created  
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis 
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics; 
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over 
the world. Dr. Flajolet was a member of the French Academy of Sciences. 

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith 
Cover illustration by

     Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK 

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 2/4/25 5:52  PM

1.3  LOOPS

‣while loops 

‣ for loops 

‣ nested loops 

‣ image processing

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


functions libraries

loops

Basic building blocks for programming

2

any program you might want to write

objects

graphics, sound, and image I/O

arrays

Math text I/O

assignment statementsbuilt-in data types

conditionals

to infinity and beyond !

loops



1.3  LOOPS

‣while loops 

‣ for loops 

‣ nested loops 

‣ image processing
R O B E R T  S E D G E W I C K  

K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


The while loop

Goal.  Repeat a certain statement (or statements). 

・Evaluate a boolean expression. If true, 
– execute sequence of statements in code block 
– repeat

4

boolean 
expression

true false

statement 2

statement 1

start

end

while loop flow chart

while (<boolean expression>) { 
   <statement 1> 
   <statement 2> 
}

while loop template

loop-continuation condition



Goal.  Recreate percussive beat from Queen’s “We Will Rock You.”

effect audio file sound

stomp stomp.wav

clap clap.wav

silence rest.wav

An infinite while loop

public class StompStompClap { 
   public static void main(String[] args) { 

      while (true) { 
         StdAudio.play("stomp.wav"); 
         StdAudio.play("stomp.wav"); 
         StdAudio.play("clap.wav"); 
         StdAudio.play("rest.wav"); 
      } 

   } 
}

5

an infinite loop

~/cos126/loops> java-introcs StompStompClap 

  [plays stomp-stomp-clap beat] 

 

    


Stomp ClapStomp

<Ctrl–C> to break out of infinite loop



Goal.  Repeat a ringtone n times.

Counting from 1 to n

public class Ringtone { 
   public static void main(String[] args) { 
      String filename = args[0]; 
      int n = Integer.parseInt(args[1]); 

      int i = 1; 
      while (i <= n) { 
         StdAudio.play(filename); 
         i++; 
      } 

   } 
}

6

~/cos126/loops> java-introcs Ringtone marimba.wav 1 

  [plays marimba ringtone once] 

~/cos126/loops> java-introcs Ringtone marimba.wav 3 

  [plays marimba ringtone three times] 

~/cos126/loops> java-introcs Ringtone sonar.wav 2 

  [plays sonar ringtone twice]
repeat n times

shorthand for
 i = i + 1;



Goal.  Repeat a ringtone n times. 
Trace.  Show values of variables at end of each iteration of while loop.

public class Ringtone { 
   public static void main(String[] args) { 
      String filename = args[0]; 
      int n = Integer.parseInt(args[1]); 

      int i = 1; 
      while (i <= n) { 
         StdAudio.play(filename); 
         i++; 
      } 
 

   } 
}

Counting from 1 to n

7

filename n i

"marimba.wav" 3 1

"marimba.wav" 3 2

"marimba.wav" 3 3

"marimba.wav" 3 4

a trace of variables
(values at end of each loop iteration)

before loop

after loop



public class Mystery { 
   public static void main(String[] args) { 
      int n = Integer.parseInt(args[0]); 
      int i = 0; 
      int value = 1; 

      while (i <= n) { 
         System.out.println(value); 
         i++; 
         value = value * 2; 
      } 

   } 
}

Loops:  quiz 1

What does the following program do when n is 10?

A. Print 0  to 10 . 

B. Print powers of 2 , from 20 to 29. 

C. Print powers of 2 , from 20 to 210. 

D. Print powers of 2 , from 20 to 211. 

E. Print powers of 2 , from 21 to 210.

8

i goes from 0 to n

if it were System.out.println(i)

value is 211 after loop
(but not printed)



Examples of while loops

9

computation while loop

print integers
from n down to 1

int i = n; 
while (i >= 1) { 
   System.out.println(i); 
   i--; 
}

infinite loop
while (true) { 
   StdAudio.play("clap.wav"); 
}

number of decimal digits
in positive integer x

int digits = 0;  
while (x > 0) { 
   x = x / 10; 
   digits++; 
}

curly braces are optional here
since only one statement in body of loop

(but better style to use curly braces)

integer division

shorthand for
i = i - 1



LOOPS

‣while loops 

‣ for loops 

‣ nested loops 

‣ image processing
R O B E R T  S E D G E W I C K  

K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


The for loop

An alternative repetition structure. 

・Perform an initialization step. 

・Evaluate a boolean expression. If true, 
– execute sequence of statements in code block 
– perform an update step 
– repeat

11

boolean 
expression

true false

statement 2

statement 1

initialization

update

end

start

for loop flowchart

for (<init>; <boolean expression>; <update>) { 
   <statement 1> 
   <statement 2> 
}

for loop template

typically, declaring and initializing a variable

typically, updating the value of the variable



Counting from 1 to n

Goal.  Play a WAV file n times.

public class MusicLoop { 
   public static void main(String[] args) { 
      String filename = args[0]; 
      int n = Integer.parseInt(args[1]); 
 
      for (int i = 1; i <= n; i++) { 
         StdAudio.play(filename); 
      } 

   } 
}

12

repeat n times

~/cos126/loops> java-introcs MusicLoop heartbeat.wav 1 

  [plays heartbeat once] 

 
~/cos126/loops> java-introcs MusicLoop heartbeat.wav 9999999 

  [plays heartbeat repeatedly] 

 
~/cos126/loops> java-introcs MusicLoop AmenBreak.wav 10 

  [plays The Winstons "Amen Break" drum break 10 times]

identical behavior 
as Ringtone.java

among most sampled tracks
in music history



A for loop (in C)

13

Copyright 2004, FoxTrot by Bill Amend

https://www.gocomics.com/foxtrot/2003/10/03


Examples of for loops

14

computation for loop

factorial
(1 × 2 × 3 × … × n)

int product = 1; 
for (int i = 2; i <= n; i++) { 
   product = product * i; 
}

print integers
from n down to 1

for (int i = n; i >= 1; i--) { 
   System.out.println(i); 
}

infinite loop
for (;;) { 

     StdAudio.play("heartbeat.wav"); 
}

curly braces are optional since only
one statement in body of loop
(but better style to include)

empty initialization and update
(⟹ better style to use while loop)



Loops:  quiz 2

Q.  Which value does the following program print when n is 3?

A. 0 1 2 3 2 1 0 

B. 0 1 0 2 0 1 0 

C. 0 1 0 2 0 1 0 3 

D. 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

15

public class Ruler { 
   public static void main(String[] args) { 
      int n = Integer.parseInt(args[0]); 

      String ruler = "0"; 
      for (int i = 1; i <= n; i++) { 
         ruler = ruler + " " + i + " " + ruler; 
      } 

      System.out.println(ruler); 
   } 
}

n i ruler

3 "0"

3 1 "0 1 0"

3 2 "0 1 0 2 0 1 0"

3 3 "0 1 0 2 0 1 0 3 0 1 0 2 0 1 0"

3 4 "0 1 0 2 0 1 0 3 0 1 0 2 0 1 0"

~/cos126/loops> java Ruler 3 
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 
 
~/cos126/loops> java Ruler 100 
Exception in thread "main" 
java.lang.OutOfMemoryError

2101 − 1
integers

before loop

after loop



While loop vs. for loop

Fact.  Any while loop can be replaced with a for loop, and vice versa.  

Q.  Which one should I use? 
A.  Guiding principle:  use loop construct that leads to clearer code. 
 
Rule-of-thumb.  Use a for loop when you know the number of iterations ahead of time.

16

int i = 1; 
while (i <= n) { 
   StdAudio.play(filename); 
   i++; 
}

while loop

for (int i = 1; i <= n; i++) { 
   StdAudio.play(filename); 
}

equivalent for loop
(except i not accessible after loop)

code controlling loop
localized to one place



LOOPS

‣while loops 

‣ for loops 

‣ nested loops 

‣ image processing
R O B E R T  S E D G E W I C K  

K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Loops:  quiz 3

Suppose m = 10 and n = 5. How many lines of output does the following program produce?

A. 10  

B. 15 

C. 50 

D. 55 

E. 60

18

public class Mystery { 
   public static void main(String[] args) { 
      int m = Integer.parseInt(args[0]); 
      int n = Integer.parseInt(args[1]); 

      for (int i = 1; i <= m; i++) {                      
         for (int j = 1; j <= n; j++) {                      
            System.out.println(i + "-" + j); 
         } 
      } 

   } 
} 

for loop nested
within a for loop

mn



Gambler’s ruin problem

Gambler’s ruin.  A gambler starts with $stake and places $1 fair bets. 

・Outcome 1 (win):  gambler reaches $goal. 

・Outcome 2 (loss):  gambler goes broke with $0. 
 
 
 
 
 
 
 
Q1.  What are the chances of winning? 
Q2.  How many bets until win or loss? 
 
One approach.  [Monte Carlo simulation] 

・Perform one experiment using simulated coin flips. 

・Repeat experiment many times and collect statistics.
19



Gambler’s ruin problem:  one experiment

Warmup.  Simulate one experiment.

20

public class GamblerWarmup { 
   public static void main(String[] args) { 
      int stake = Integer.parseInt(args[0]); 
      int goal  = Integer.parseInt(args[1]); 

      int cash = stake; 
      System.out.println(cash); 
      while ((cash > 0) && (cash < goal)) {   
         if (Math.random() < 0.5) cash++; 
         else                     cash--; 
         System.out.println(cash); 
      } 
   } 
} 

~/loops> java GamblerWarmup 4 10  
4 
5 
4 
3 
4 
3 
2 
1 
2 
1 
0

use while loop
(don’t know how many iterations)

if-else statement nested
within a while loop

print trace
(for debugging only)



Monte Carlo simulation of gambler’s ruin problem

21

public class Gambler { 
   public static void main(String[] args) { 
      int stake  = Integer.parseInt(args[0]); 
      int goal   = Integer.parseInt(args[1]); 
      int trials = Integer.parseInt(args[2]); 
       
      int wins = 0; 
      for (int t = 1; t <= trials; t++) {   
         int cash = stake; 
         while ((cash > 0) && (cash < goal)) {   
            if (Math.random() < 0.5) cash++; 
            else                     cash--; 
         } 
         if (cash == goal) wins++; 
      } 

      System.out.println(wins + " wins of " + trials); 
   } 
} 

do one experiment

do trials experiments

if goal met in experiment t,
record as a win

make one bet

~/cos126/loops> java Gambler 5 25 1000 
191 wins of 1000 
 
~/cos126/loops> java Gambler 5 25 1000 
183 wins of 1000

initialize cash to stake for each experiment



Digression:  simulation vs. mathematical analysis

Facts.  [known via probability theory]  

・Probability of winning  =  stake  ÷  goal. 

・Expected number of bets  =  stake  ×  (goal − stake). 
 
Ex.  [ stake = 500, goal = 2500 ]  

・20% chance of winning. 

・Expect to make 1 million bets per experiment. 
 
 
 
Remarks. 

・For gambler’s ruin, mathematical analysis is well known. 

・Computer simulation agrees with math. 

・For more complicated variants, math may be beyond reach. 

・Monte Carlo simulations widely used in STEM.

22

stake

~/cos126/loops> java Gambler 500 2500 1000 
197 wins of 1000 
 

~/cos126/loops> java Gambler 500 2500 1000 
202 wins of 1000

takes about 15 seconds
(makes about 1 billion bets)

goal trials



Integer factorization

Goal.  Given a positive integer n, find its prime factorization. 
 
 
 
Grade-school factoring algorithm. 
 
 
 
 
 
 
 
 
 
Critical application.  Cryptography.

23

3,757,208  =  2 × 2 × 2 × 7 × 13 × 13 × 39798  =  2 × 7 × 7 11,111,111,111,111,111  =  2,071,723 × 5,363,222,357

security of internet commerce relies on 
difficulty of factoring very large integers

Consider each potential divisor d between 2 and n:

• while d is a divisor of n:

– print d

– n  ← n / d

FACTOR(n)



Integer factorization

 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 1.  Uses long instead of int to support integers between −263 and 263 − 1. 
Remark 2.  Way too slow to break cryptography.

24

public class Factors { 
   public static void main(String[] args) { 
      long n = Long.parseLong(args[0]); 

      for (long d = 2; d <= n; d++) {   
         while (n % d == 0) {   
            System.out.print(d + " "); 
            n = n / d;   
         } 
      } 
      System.out.println(); 

   } 
}

~/cos126/loops> java Factors 98 
2 7 7 

~/cos126/loops> java Factors 3757208 
2 2 2 7 13 13 397 

~/cos126/loops> java Factors 97 
97 

~/cos126/loops> java Factors 11111111111111111 
2071723 5363222357

can be sped up substantially by stopping when 
(but still way too slow)

d > n

takes a few seconds

try all possible
divisors d

d is a divisor,
so factor it out



LOOPS

‣while loops 

‣ for loops 

‣ nested loops 

‣ image processing
R O B E R T  S E D G E W I C K  

K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu


Image processing

A picture is a width-by-height grid of pixels; each pixel has a color. 
 
 
 
 
 
 
 
 
 
 
 
 
Image-processing conventions. 

・Pixel (i, j) means column i and row j.  

・Pixel (0, 0) is upper–left.
26

arch.jpgmandrill.jpg

warning:  different conventions from
matrices and Cartesian coordinates

!"#$%
!&'%()*'+"

+",-.

!"#$%
!/()/"

.$"0.-
&'%

*'+

!"#$%
!&'%1#()*'+$#"



RGB color model

Color is a sensation in the eye from electromagnetic radiation.  

RGB color model.  Popular format for representing color on digital displays. 

・Color is composed of red, green, and blue components. 

・Each color component is an integer between 0 to 255.

27

name red green blue color

red 255 0 0

green 0 255 0

blue 0 0 255

black 0 0 0

white 255 255 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

book blue 0 64 128



Grayscale

Goal.  Convert color image to grayscale. 

・RGB color is a shade of gray when R = G = B. 

・To convert RGB color to grayscale, use luminance for R, G, and B values:

28

lum gray

76

150

29

0

255

226

105

179

52

Y  =  0.299 R + 0.587 G + 0.114 B

Y  =  0.299 R + 0.587 G + 0.114 B

    =  0.299 (0) +  0.587 (64) + 0.114 (128)

    =  52.16

fundamental operation
in computer graphics and vision

name red green blue color

red 255 0 0

green 0 255 0

blue 0 0 255

black 0 0 0

white 255 255 255

yellow 255 255 0

magenta 255 0 255

cyan 0 255 255

book blue 0 64 128



Standard picture library

StdPicture.  Our library for manipulating images.

29

public class StdPicture

static void read(String filename) initialize picture from filename

static void save(String filename) save picture to filename

static  int width() width of picture

static  int height() height of picture

static  int getRed(int col, int row) red component of pixel (col, row)

static  int getGreen(int col, int row) green component of pixel (col, row)

static  int getBlue(int col, int row) blue component of pixel (col, row)

static void setRGB(int col, int row, 
              int r, int g, int b) set color of pixel (col, row) to (r, g, b)

              ⋮        ⋮

R O B E R T  S E D G E W I C K  
K E V I N  W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

available with javac-introcs 
and java-introcs commands

supported file formats: 
JPEG, PNG, GIF, TIFF, BMP



~/> java-introcs StdPicture arch.jpg

Grayscale filter

30

public class Grayscale { 
   public static void main(String[] args) { 
      String filename = args[0]; 
      StdPicture.read(filename); 
      int width = StdPicture.width(); 
      int height = StdPicture.height(); 

      for (int col = 0; col < width; col++) {   
         for (int row = 0; row < height; row++) {   
            int r = StdPicture.getRed(col, row);   
            int g = StdPicture.getGreen(col, row);   
            int b = StdPicture.getBlue(col, row); 
            int y = (int) (Math.round(0.299*r + 0.587*g + 0.114*b)); 
            StdPicture.setRGB(col, row, y, y, y);   
         } 
      } 

      StdPicture.show(); 
   } 
}

~/> java-introcs Grayscale arch.jpg

luminance formula
(Y  =  0.299 R + 0.587 G + 0.114 B)

read picture from file
and get dimensions

display picture in window

iterate over
all pixels

get RGB values

red green blue



RGB layers negative

Image processing:  color image filters

31

sepia duotoneoriginal grayscale

brighter darker



Image processing:  shape masks

32

original

heart

rounded rectangle oval

puzzle piece tiger



Flip an image horizontally (inverted filter)

Goal.  Flip an image horizontally, like looking into a mirror.

33

https://www.wikihow.com/Inverted-Filter

original Tik Tok inverted filter

on Zoom, Instagram, TikTok, …



Deja Vu challenge

Deja Vu challenge.  Record video of face while repeatedly turning on/off inverted filter. 
Disclaimer.  COS 126 is not liable for damage to self-esteem.

34



Flip an image horizontally:  demo

Goal.  Flip an image horizontally, like looking into a mirror.

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 2) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

35

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

original image



(0, 0)(1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(0, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)

(0, 2)(1, 2)(2, 2)(3, 2)(4, 2)(5, 2)

(0, 3)(1, 3)(2, 3)(3, 3)(4, 3)(5, 3)

(0, 0)(1, 0)(2, 0)(3, 0)(4, 0)(5, 0)

(0, 1)(1, 1)(2, 1)(3, 1)(4, 1)(5, 1)

(0, 2)(1, 2)(2, 2)(3, 2)(4, 2)(5, 2)

(0, 3)(1, 3)(2, 3)(3, 3)(4, 3)(5, 3)

Flip an image horizontally:  demo

Goal.  Flip an image horizontally, like looking into a mirror.

36

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

Algorithm.  For each pixel (col, row), swap with pixel (width − col − 1, row).

original image flipped image



~/> java-introcs StdPicture arch.jpg~/> java-introcs FlipHorizontal arch.jpg

Flip an image horizontally:  implementation

Goal.  Flip an image horizontally, like looking into a mirror. 

Algorithm.  For each pixel (col, row), swap with pixel (width − col − 1, row).

37

for (int col = 0; col < width / 2; col++) {   
   for (int row = 0; row < height; row++) {   
      int r1 = StdPicture.getRed(col, row);   
      int g1 = StdPicture.getGreen(col, row);   
      int b1 = StdPicture.getBlue(col, row); 
      int r2 = StdPicture.getRed(width - col - 1, row); 
      int g2 = StdPicture.getGreen(width - col - 1, row);   
      int b2 = StdPicture.getBlue(width - col - 1, row); 
      StdPicture.setRGB(col, row, r2, g2, b2);   
      StdPicture.setRGB(width - col - 1, row, r1, g1, b1);   
   } 
} 
StdPicture.show();

why not width ?



Loops:  quiz 4

What image does the following code fragment produce?

A. Original image. 

B. Horizontal flip. 

C. Vertical flip.

38

for (int row = 0; row < height; row++) {   
   for (int col = 0; col < width / 2; col++) {   
      int r1 = StdPicture.getRed(col, row);   
      int g1 = StdPicture.getGreen(col, row);   
      int b1 = StdPicture.getBlue(col, row); 
      int r2 = StdPicture.getRed(width - col - 1, row); 
      int g2 = StdPicture.getGreen(width - col - 1, row);   
      int b2 = StdPicture.getBlue(width - col - 1, row); 
      StdPicture.setRGB(col, row, r2, g2, b2);   
      StdPicture.setRGB(width - col - 1, row, r1, g1, b1);   
   } 
} 
StdPicture.show();

switched order of 
two for loops



Live coding (Deja Vu challenge)

39

public class DejaVuChallenge { 
    public static void main(String[] args) { 
        // read file 
        String filename = args[0]; 
        StdPicture.read(filename); 

        // get dimensions 
        int width = StdPicture.width(); 
        int height = StdPicture.height(); 

        while (true) { 

            // flip image horizontally 
            for (int col = 0; col < width / 2; col++) {   
                for (int row = 0; row < height; row++) {   
                    int r1 = StdPicture.getRed(col, row);   
                    int g1 = StdPicture.getGreen(col, row);   
                    int b1 = StdPicture.getBlue(col, row); 
                    int r2 = StdPicture.getRed(width - col - 1, row); 
                    int g2 = StdPicture.getGreen(width - col - 1, row);   
                    int b2 = StdPicture.getBlue(width - col - 1, row); 
                    StdPicture.setRGB(col, row, r2, g2, b2);   
                    StdPicture.setRGB(width - col - 1, row, r1, g1, b1);   
                } 
            } 

            // display image and pause 
            StdPicture.show(); 
            StdPicture.pause(100); 
        } 
    } 
}



Summary

Iteration.  Use while and for loops to repeat code in a program. 
Nested iteration.  Body of loop contains another loop. 
Image processing.  An image is a 2D grid of pixels, each of which has a color.

40

control flow with loops



Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Buzz Lightyear alphacoders.com

Rainbow Infinity Adobe Stock education license

Stomp–Stomp–Clap Queen

Ringtone Icon Wikimedia public domain

Marimba Ringtone Apple iPhone

Sonar Ringtone Apple iPhone

Coin Toss clipground.com CC BY 4.0

Paper Airplanes FoxTrot by Bill Amend

Heartbeat freesound.org CC BY 4.0

Amen Break The Winstons

https://mobile.alphacoders.com/wallpapers/view/590413/Movie-Toy-Story-3-Phone-Wallpaper
https://stock.adobe.com/images/rainbow-infinity-symbol-isolated-on-white-background-vector/509130339
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://en.wikipedia.org/wiki/We_Will_Rock_You
https://commons.wikimedia.org/wiki/File:Ringtone_symbol.svg
https://creativecommons.org/public-domain/
https://clipground.com/images/toss-clipart-1.jpg
https://creativecommons.org/licenses/by/4.0/
https://www.gocomics.com/foxtrot/2003/10/03
https://freesound.org/people/InspectorJ/sounds/485076/
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Amen_break


Lecture Slides  © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Russian Nesting Dolls Adobe Stock education license

Cryptography Icon Adobe Stock education license

Image Processing Icon Adobe Stock education license

Mandrill USC SIPI Image Database

Johnson Arch Danielle Alio Capparella by photographer

RGB Color Model Wikimedia Kopimi

LGBTQ+ Eye Wikimedia CC BY 2.0

Inverted Filter WikiHow

https://stock.adobe.com/images/russian-nesting-dolls-babushka-half-open/23095299
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/cryptography-icon/562866845
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/image-processing-flat-icon/420702399
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://sipi.usc.edu/database/database.php?volume=misc
https://reunions.princeton.edu/project/campus/
https://commons.wikimedia.org/wiki/File:RGB_color_model.svg
https://en.wikipedia.org/wiki/Piratbyr%C3%A5n#Kopimi
https://commons.wikimedia.org/wiki/File:LGBTQ+_Eye_(49620315828).jpg
https://creativecommons.org/licenses/by/2.0/
https://www.youtube.com/watch?v=IVQvXUdT_b4

