
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 2/2/25 6:15  PM

1.3 CONDITIONALS

‣ booleans

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speech
https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

conditionals

Basic building blocks for programming

2

previous lecture:
equivalent to a calculator

loops

any program you might want to write

objects

graphics, sound, and image I/O

arrays

Math text I/O

assignment statementsbuilt-in data types
this lecture:

decision making

conditionals

functions libraries

Conditionals and loops

Control flow. The sequence of statements that are actually executed in a program.
 
Conditionals and loops. Enable us to choreograph control flow.

3

straight-line control flow
(last lecture)

control flow with conditionals and loops
(this week)

1.3 CONDITIONALS

‣ booleans

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speechR O B E R T S E D G E W I C K
K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Built-in data types: review

A data type (type) is a set of values and a set of operations on those values.

5

type set of values example values examples of operations

String sequences of characters
"Hello, World"

"COS 126 is fun!"
concatenate

int integers
17

-12345

add, subtract, multiply, divide,
compare, equality

double floating-point numbers
2.5

-0.125

add, subtract, multiply, divide,
compare, equality

boolean truth values
true

false

and, or, not,
equality

Java’s built-in data types
(that we use regularly in this course)

The boolean data type

Typical usage: decision making in a program.

6

values true and false

literals true false

operations not and or

operators ! && ||

expression value

false && false false

false && true false

true && false false

true && true true

truth table for AND

expression value

false || false false

false || true true

true || false true

true || true true

truth table for OR

expression value

!false true

!true false

truth table for NOT

logical operators

with conditionals and loops

Equality and comparison operators: examples

7

zero denominator? denominator == 0

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

divisible by 60? (minutes % 60) == 0

RGB color is not black? (red > 0) || (green > 0) || (blue > 0)

valid month? (month >= 1) && (month <= 12)

invalid month? !((month >= 1) && (month <= 12))

string equality args[0] == "Hello"
don’t compare strings with ==

(this expression evaluates to false)

compound boolean expressions

X

The majority function

Majority function. True if at least two of a, b, and c are true; false otherwise.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Amazing fact. Any boolean function can be constructed using &&, ||, and ! operators.
8

a b c majority

false false false false

false false true false

false true false false

false true true true

true false false false

true false true true

true true false true

true true true true

boolean majority = (a && b) || (b && c) || (a && c);

truth table for majority function

Example of computing with booleans: leap year test

Q. Is a given year a leap year?
A. Yes if either: (Case A:) divisible by 400 or (Case B:) divisible by 4 but not 100.

9

public class LeapYear {
 public static void main(String[] args) {

 int year = Integer.parseInt(args[0]);
 boolean isLeapYear;

 // Case B: divisible by 4 but not 100
 isLeapYear = (year % 4 == 0) && (year % 100 != 0);

 // ...or Case A: divisible by 400
 isLeapYear = isLeapYear || (year % 400 == 0);

 System.out.println(isLeapYear);

 }
}

~/cos126/datatypes> java LeapYear 2024
true

~/cos126/datatypes> java LeapYear 2023
false

~/cos126/datatypes> java LeapYear 1900
false

~/cos126/datatypes> java LeapYear 2000
true

if argument to System.out.println() is of type boolean,
it prints either true or false

Gregorian calendar

Conditionals: quiz 1

Which of the following code fragments check whether month is between 1 and 12?
 
 
 
 
 

A. I only.

B. II only.

C. I and II.

D. Neither I nor II.

10

1 <= month <= 12

~/cos126/datatypes> jshell
jshell> int month = 3;
jshell> 1 <= month <= 12
| Error:
| bad operand types for binary operator
'<='
| first type: boolean
| second type: int
| 1 <= month <= 12
| ^--------------^

jshell> month >= 1 && month <= 12
$2 ==> true

month >= 1 && month <= 12I. II.

(1 <= month) <= 12 (month >= 1) && (month <= 12)

1.3 CONDITIONALS

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The if statement

Execute certain statement(s) depending on the value of a boolean expression.

・Evaluate a boolean expression.

・If true, execute statements in code block delimited by curly braces.

12

if (<boolean expression>) {
 <statement 1>
 <statement 2>
}

if statement template

boolean
expressiontrue false

statement 2

statement 1

start

end

The if statement

Execute certain statement(s) depending on the value of a boolean expression.

・Evaluate a boolean expression.

・If true, execute statements in code block delimited by curly braces.

13

replaces x with
the absolute value of x

x < 0true

x = -x;

falseif (x < 0) {
 x = -x;
}

start

end

Code blocks

A code block can contain a sequence of statements.

・Assignment statements.

・Declaration statements.

・Other if statements.

・…

14

~/cos126/conditionals> java TwoSort 1234 126
126
1234

~/cos126/conditionals> java TwoSort 126 1234
126
1234

“local” variable accessible only
within the block in which it is declared

public class TwoSort {
 public static void main(String[] args) {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);

 if (b < a) {
 int temp = a;
 a = b;
 b = temp;
 }

 System.out.println(a);
 System.out.println(b);
 }
}

code block consists of a
sequence of statements

(swap values in a and b)

temp not
accessible here

More examples of if statements

15

computation for loop

singular vs. plural
(126 dollars vs. 1 dollar)

String result = price + " dollar";
if (price != 1) {
 result = result + "s";
}

check if donor is ineligible
to donate blood

if ((age < 16) || (weight < 110)) {
 System.out.println("ineligible");
}

time normalization

if (minutes >= 60) {
 minutes = minutes - 60;
 hours = hours + 1;
}

maximum of three integers
int max = a;
if (b > max) max = b;
if (c > max) max = c;

curly braces are optional
since body of each if statement
contains only one statement

compound boolean expression

multiple statements in
body of if statement

Conditionals: quiz 2

What does the following code fragment print?

 
 

A. "positive"

B. nothing

C. compile-time error

D. run-time exception

16

int x = -126;
if (x > 0); {
 System.out.println("positive");
};

equivalent to

int x = -126;
if (x > 0)
 ;
{
 System.out.println("positive");
}
;

1.3 CONDITIONALS

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The if-else statement

Execute certain statements depending on the value of a boolean expression.

・Evaluate a boolean expression.

・If true, execute some statements.

・Otherwise, execute different statements. the else clause

if (<boolean expression>) {
 <statement 1>
 <statement 2>
}
else {
 <statement 3>
}

if–else statement template

boolean
expression

true

statement 2

statement 1

statement 3

false

start

end
18

The if-else statement

Execute certain statements depending on the value of a boolean expression.

・Evaluate a boolean expression.

・If true, execute some statements.

・Otherwise, execute different statements.

19

sets max to the
maximum of a and b

a > btrue

max = a; max = b;

false

start

end

the else clause

int max;
if (a > b) {
 max = a;
}
else {
 max = b;
}

Simulating a fair coin flip

Goal. Simulate a fair coin flip.  

 
Remark. Math.random() returns a double value in the range [0, 1).

20

~/cos126/conditionals> java CoinFlip
Heads

~/cos126/conditionals> java CoinFlip
Tails

~/cos126/conditionals> java CoinFlip
Tails

public class CoinFlip {
 public static void main(String[] args) {
 double r = Math.random();

 if (r < 0.5) {
 System.out.println("Heads");
 }
 else {
 System.out.println("Tails");
 }
 }
}

More examples of if-else statements

21

computation if–else statement

simulating a
gambler’s fair bet

double r = Math.random();
if (r < 0.5) cash = cash + bet;
else cash = cash - bet;

parity String parity;
if (n % 2 == 0) parity = "even";
else parity = "odd";

integer remainder
(with guard clause)

if (denominator == 0) {
 System.out.println("division by zero");
}
else {
 int remainder = numerator % denominator;
 System.out.println("remainder = " + remainder);
}

if body consists of only one statement,
so curly braces are optional

good style to include curly braces
even when optional

even: …, −4, −2, 0, 2, 4, …

Conditionals: quiz 3

What does the following (buggy) code fragment print?

 
 

 

A. "positive"

B. "not positive"

C. nothing

D. compile-time error

E. run-time exception

22

int x = -126;
boolean isPositive = (x > 0);
if (isPositive = true) System.out.println("positive");
else System.out.println("not positive");

fixed

if (isPositive == true)

better style

if (isPositive)

1.3 CONDITIONALS

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Nesting conditionals: rock, paper, scissors

Three-way selection. Rock, paper, scissors.

public class RockPaperScissors {
 public static void main(String[] args) {
 int r = (int) (Math.random() * 3);

 if (r == 0) {
 System.out.println("Rock");
 }
 else {
 if (r == 1) {
 System.out.println("Paper");
 }
 else {
 System.out.println("Scissors");
 }
 }
 }
}

24

if-else statement nested
within the else clause

of an if statement

~/cos126/conditionals> java RockPaperScissors
Rock

~/cos126/conditionals> java RockPaperScissors
Scissors

0, 1, or 2
(see precept)

Nesting conditionals: types of triangle

Triangle. Given three angles of a triangle, is it invalid, acute, obtuse, right?

public class Triangle {
 public static void main(String[] args) {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);

 if (a <= 0 || b <= 0 || c <= 0 || (a + b + c != 180))
 System.out.println("invalid");
 else {
 if (a < 90 && b < 90 && c < 90)
 System.out.println("acute");
 else {
 if (a > 90 || b > 90 || c > 90)
 System.out.println("obtuse");
 else
 System.out.println("right");
 }
 }
 }
}

25

type description

invalid angles don’t sum to 180°

acute all angles less than 90°

obtuse an angle greater than 90°

right a 90° angle

if statement nested
within an if statement

if statement nested
within an if statement
within an if statement

mutually exclusive alternatives

acute right obtuse

Multiway selection shorthand

Note. Curly braces not needed here since each body consists of a single (compound) statement.

26

public class Triangle {
 public static void main(String[] args) {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);

 if (a <= 0 || b <= 0 || c <= 0 || (a + b + c != 180))
 System.out.println("invalid");
 else if (a < 90 && b < 90 && c < 90)
 System.out.println("acute");
 else if (a > 90 || b > 90 || c > 90)
 System.out.println("obtuse");
 else
 System.out.println("right");

 }
}

4 mutually
exclusive

alternatives

acute right obtuse

type description

invalid angles don’t sum to 180°

acute all angles less than 90°

obtuse an angle greater than 90°

right a 90° angle

mutually exclusive alternatives

Multiway selection. Mutually exclusive alternatives.

A ladder of nested if-else statements

27

if (<boolean expression 1>) {
 <statement 1>
}
else if (<boolean expression 2>) {
 <statement 2>
}
else if (<boolean expression 3>) {
 <statement 3>
}
else {
 <statement 4>
}

if-else ladder template

boolean
expression 1 false

statement 2statement 1

start

end

boolean
expression 2

boolean
expression 3

statement 3

true

true

true

statement 4

false

false

More examples of multiway selection

28

computation nested if-else statements

signum function
int signum;
if (x < 0) signum = -1;
else if (x > 0) signum = +1;
else if signum = 0;

Reynold’s number
(ratio of inertial to viscous forces)

if (reynolds <= 2000.0) {
 System.out.println("laminar flow");
}
else if (reynolds >= 3500.0) {
 System.out.println("turbulent flow");
}
else {
 System.out.println("transitional flow");
}

signum(x) =
−1 if x < 0

0 if x = 0
+1 if x > 0

3 mutually exclusive alternatives

3 mutually exclusive alternatives

Conditionals: quiz 4

What will the following (buggy) code fragment print? Assume income is 100000.

A. 0.22

B. 0.25

C. 0.28

D. 0.33

E. 0.35

29

double rate = 0.35;
if (income < 47450) rate = 0.22;
if (income < 114650) rate = 0.25;
if (income < 174700) rate = 0.28;
if (income < 311950) rate = 0.33;
System.out.println(rate);

printed if (income >= 311950)

printed if (income < 311950)

missing else clauses
(alternatives aren’t mutually exclusive)

never printed

income rate

0 – $47,450 22%

$47,450 – $114,649 25%

$114,650 – $174,699 28%

$174,700 – $311,949 33%

$311,950 + 35%

marginal tax rate

Nested if statements

Design principle. Avoid unnecessary/gratuitous nesting of if statements.

30

if (r == 0 && g == 0 && b == 0) {
 System.out.println("black");
}

easier to read and debug

if (r == 0) {
 if (g == 0) {
 if (b == 0) {
 System.out.println("black");
 }
 }
}

bad design (gratuitous nesting)

1.3 CONDITIONALS

‣ if statements

‣ if–else statements

‣ nested conditionals

‣ year-to-speech
R O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Text-to-speech year

Rules for speaking a year (1–9999) in English.

・Break up year into first-two and last-two digits; say each two-digit number.

・Special cases:
– year ends in 000:	 	 say thousand for last three digits
– year ends in 00 (but not 000):	 say hundred for last two digits
– year ends in 01 to 09:	 say oh followed by single digit
– year begins with 00:	 	 skip first two digits

32

year spoken

2024 twenty twenty-four

1776 seventeen seventy-six

2000 two thousand

1700 seventeen hundred

1901 nineteen oh one

0026 twenty-six

12345 invalid year

Text-to-speech approach

Domain-specific synthesis. Concatenate pre-recorded words to form desired output.
 
 
 
 
 
 
 
 
 
Applications.

・Talking clocks.

・Train schedule announcements.

・Interactive telephone voice response systems.  

Note. Limited to words in vocabulary.
33

word audio file

1–99 1.wav, 2.wav, 3.wav, …

hundred hundred.wav

thousand thousand.wav

oh oh.wav

oh.wav19.wav 1.wav

vocabulary

speaking the year 1901

Live coding

34

public class SayYear {
 public static void main(String[] args) {

 int year = Integer.parseInt(args[0]);
 int firstTwoDigits = year / 100;
 int lastTwoDigits = year % 100;

 if (year % 1000 == 0) {
 int firstDigit = year / 1000;
 StdAudio.play(firstDigit + ".wav");
 StdAudio.play("thousand.wav");
 }

 else {

 if (firstTwoDigits > 0)
 StdAudio.play(firstTwoDigits + ".wav");

 if (lastTwoDigits == 0)
 StdAudio.play("hundred.wav");

 else {
 if (lastTwoDigits < 10)
 StdAudio.play("oh.wav");

 StdAudio.play(lastTwoDigits + ".wav");
 }
 }

 }
}

special case for years ending in 00 (but not 000)

assumes year is between 1 and 9999

special case for years ending in 000

special case for years ending in 01 to 09

say first two digits (unless 00)

say last two digits

parse first and last two digits of year

Testing

Principle. Supply inputs that activate all possible execution paths through program.

35

~/cos126/conditionals> java-introcs SayYear 2024

 [speaks "twenty twenty-four"]

~/cos126/conditionals> java-introcs SayYear 1776

 [speaks "seventeen seventy-six"]

~/cos126/conditionals> java-introcs SayYear 2000

 [speaks "two thousand"]

~/cos126/conditionals> java-introcs SayYear 1700

 [speaks "seventeen hundred"]

~/cos126/conditionals> java-introcs SayYear 1901

 [speaks "nineteen oh one"]

~/cos126/conditionals> java-introcs SayYear 26

 [speaks "twenty-six"]

so that all code gets tested

year ends in 01 to 09

year ends in 000

year ends in 00 (but not 000)

year begins with 00

typical case

typical case

Summary

One-way selection.	 The if statement.
Binary selection.	 The if–else statement.
Multiway selection.	 Ladder of nested if–else statements.

36

control flow with conditionals

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

Decision Making nextlevelscoaching.com non-commercial use

Scientific Calculator Fornax at Wikimedia CC BY-SA 3.0

Coin Toss clipground.com CC BY 4.0

Types of Triangles Adobe Stock education license

Bugs Adobe Stock education license

Russian Nesting Dolls Adobe Stock education license

Rock, Paper, Scissors Adobe Stock education license

Watering Can Katerina Kamprani

Digital Clock Chrkl at Wikimedia CC BY 3.0

Live Coding Icon Adobe Stock education license

Code Testing Icon Adobe Stock education license

The Year in English Woodward English

https://clipart-library.com/clipart/decision-making-clipart_21.html
https://clipart-library.com/terms.html
https://commons.wikimedia.org/wiki/File:Calculator_scientific.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://clipground.com/images/toss-clipart-1.jpg
https://creativecommons.org/licenses/by-sa/4.0/
https://stock.adobe.com/images/types-of-triangles-on-white-background-vector-illustration/183105549
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/set-of-graphical-hand-drawn-bugs-butterfly/493020240?prev_url=detail
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/russian-nesting-dolls-babushka-half-open/23095299
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/different-but-same-rock-paper-scissors-and-diversity-hand-skin-design-people-game-race-and-community-theme-vector-illustration/578676762
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.theuncomfortable.com/#uncomfortable-watering-can-2
https://commons.wikimedia.org/wiki/File:DigitalClock.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://stock.adobe.com/images/developer-icon-set-included-the-icons-as-code-programmer-coding-mobile-app-api-node-connect-flow-logic-web-coder-bug-fix-and-more/200742953
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/code-testing-line-color-icon/612341019
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.woodwardenglish.com/lesson/how-to-say-the-year-in-english/

