
R O B E R T S E D G E W I C K
K E V I N W A Y N E

[Sedgewick and Flajolet] are not only worldwide leaders of the field,
they also are masters of exposition. I am sure that every serious computer scientist

will find this book rewarding in many ways.
—From the Foreword by Donald E. Knuth

Despite growing interest, basic information on methods and models for mathematically analyzing
algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to
the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary
techniques and results in the field.

Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer
science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data
structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for
predicting algorithm performance and for comparing different algorithms on the basis of performance.

Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and
analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings,
tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of
algorithms that are playing a critical role in the evolution of our modern computational infrastructure.

Improvements and additions in this new edition include

n Upgraded figures and code
n An all-new chapter introducing analytic combinatorics
n Simplified derivations via analytic combinatorics throughout

The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them
for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s Art of
Computer Programming books—and provide the background they need to keep abreast of new research.

ROBERT SEDGEWICK is the William O. Baker Professor of Computer Science at Princeton University,
where was founding chair of the computer science department and has been a member of the faculty since
1985. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and
INRIA. He is the coauthor of the landmark introductory book, Algorithms, Fourth Edition. Professor Sedgewick
earned his Ph.D from Stanford University under Donald E. Knuth.

The late PHILIPPE FLAJOLET was a Senior Research Director at INRIA, Rocquencourt, where he created
and led the ALGO research group. He is celebrated for having opened new lines of research in the analysis
of algorithms; having systematized and developed powerful new methods in the field of analytic combinatorics;
having solved numerous difficult, open problems; and having lectured on the analysis of algorithms all over
the world. Dr. Flajolet was a member of the French Academy of Sciences.

informit.com/aw | aofa.cs.princeton.edu

Cover design by Chuti Prasertsith
Cover illustration by

 Text printed on recycled paper

$79.99 U.S. | $83.99 CANADA

C
om

puter Science
A

N
 IN

T
E

R
D

IS
C

IP
L

IN
A

R
Y

 A
P

P
R

O
A

C
H

SEDGEWICK

WAYNE

Programming | Algorithms

Computer
Science

An Interdisciplinary Approach

Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 1/28/25 3:05  PM

1.2 BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversion

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Built-in data types

A data type (type) is a set of values and a set of operations on those values.

2

type set of values example values examples of operations

int integers
17

-12345

add, subtract, multiply, divide,
compare, equality

double floating-point numbers
2.5

-0.125

add, subtract, multiply, divide,
compare, equality

boolean truth values
true

false

and, or, not,
equality

String sequences of characters
"Hello, World"

"COS 126 is fun!"

concatenate

Java’s built-in data types
(that we use regularly in this course)

Programming terminology

Program. Sequence of statements.
Declaration statement. Associates a variable with a name and type.
Variable. A place to store a data-type value.
Assignment statement. Stores a value in a variable.
Literal. Programming-language representation of a data-type value.
Expression. A combination of variable names, literals, operators, etc. that evaluates to a value.

int a;

int b;

a = 1;

b = 2;

int c = a + b;

3

combined declaration
and assignment statement

variable name

literal

assignment statement

declaration statement

expression

a

uninitialized

b

uninitialized

c

uninitialized1 2 3

variable type

variables

for now

operator

Assignment statements

Q. How does an assignment statement work?
A. Java evaluates the expression on the RHS and assigns that value to the variable on the LHS.

int a;

int b;

a = 1;

b = 2;

int c = a + b;

4

expression type must be
compatible with variable type

variable
of type int

variable name evaluates to
value stored in variable

a

uninitialized

b

uninitialized

c

uninitialized1 2

variables

3

expression
of type int

assignment operator =
means assignment

(not math equality!)

Valid and invalid assignment statements

Q. Which of these independent code fragments are valid?

5

statements compiles? remark

int a = 1;

123 = a;
☹

LHS is not a variable
(= does not mean math equality)

double a = 2.5;

int b = a;
☹ RHS type is incompatible with LHS type

String s = 123; ☹ RHS type is incompatible with LHS type

int b = 2;

int a = 3 * b;
" RHS can be an expression

int a = 3;

a = 2 * a;
"

a variable can be reassigned
(that’s why it’s called a variable!)

int a = 2 * a; ☹
a variable must be assigned a value

before it can be used in an expression

Tracing the execution of a program

Q. What does this code fragment do?
A. Let’s trace the variables during execution of the code.

6

a b temp

 start of code fragment undeclared undeclared undeclared

int a = 100; 100 undeclared undeclared

int b = 126; 100 126 undeclared

int temp = a; 100 126 100

a = b; 126 126 100

b = temp; 126 100 100

trace of variables
(after each statement)

table of variable values

int a = 100;

int b = 126;

int temp = a;

a = b;

b = temp;

this idiom exchanges
the values stored in the

variables a and b

Data types: quiz 1

What are the values stored in the variables a and b after the code fragment is executed?

A. 100 and 126.

B. 126 and 100.

C. 226 and 126.

D. –26 and –26.

E. Compile-time error.

7

int a = 100;

int b = 126;

a = a + b;

b = a - b;

a = a - b;

a b

int a = 100; 100 undeclared

int b = 126; 100 126

a = a + b; 226 126

b = a - b; 226 100

a = a - b; 126 100

non-idiomatic code that
exchanges the values stored

in the variables a and b

BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversionR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The String data type

Typical usage. Program input and output; text processing.

9

values sequences of characters

example literals "Hi" "1234" "Nǐ hǎo" "###"

operation concatenation

operator +

expression value remark

"My " + "Precious" "My Precious" spaces within a string literal matter

"1234" + "99" "123499" strings are not integers

"A" + "B" + "C" "ABC"
can concatenate several strings

together, in one expression

"ሰላም " + "ልዑል!" "ሰላም ልዑል!" Unicode supported

Command-line arguments are strings

Command-line arguments. The variables args[0], args[1], args[2], … are of type String.  
Java initializes them automatically to corresponding values.

10

we’ll revisit notation
in Section 1.4 (arrays)

public class CommandLineArguments {

 public static void main(String[] args) {

 String a = args[0];

 String b = args[1];

 String c = args[2];

 String result = a + "-" + b + "-" + c;

 System.out.println(result);

 }

}

~/cos126/datatypes> java CommandLineArguments A B C

A-B-C

~/cos126/datatypes> java CommandLineArguments do re mi

do-re-mi

~/cos126/datatypes> java CommandLineArguments

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException:

Index 0 out of bounds for length 0 at

CommandLineArguments.main(CommandLineArguments.java:3)

args[0]

line number
of error

arguments delimited
by whitespace

Ruler function

11

ruler0 ruler1 ruler2 ruler3

undeclared undeclared undeclared undeclared

"0" undeclared undeclared undeclared

"0" "0 1 0" undeclared undeclared

"0" "0 1 0" "0 1 0 2 0 1 0" undeclared

"0" "0 1 0" "0 1 0 2 0 1 0" "0 1 0 2 0 1 0 3 0 1 0 2 0 1 0"

public class Ruler {

 public static void main(String[] args) {

 String ruler0 = "0";

 String ruler1 = ruler0 + " 1 " + ruler0;

 String ruler2 = ruler1 + " 2 " + ruler1;

 String ruler3 = ruler2 + " 3 " + ruler2;

 System.out.println(ruler3);

 }

}

trace of variables (after each statement)

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

string concatenation

~/cos126/datatypes> java Ruler

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversionR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The int data type

Typical usage: math calculations involving integers; program control flow.

expression value remark

20 + 3 23

20 - 3 17

20 * 3 60

20 / 3 6 drop fractional part

20 % 3 2 remainder

20 / 0 – division-by-zero error

2147483647 + 1 -2147483648 integer overflow

13

values integers between −231 and 231 − 1

example literals 1234 99 0 1000000 -3

operations add subtract multiply divide remainder

operators + - * / %

only 232 different int values
(not quite the same as integers)

don’t use int with very large integers

applying an int operator
to two int operands

always results in an int
(or division-by-zero error)

231 − 1

Input and output

Java I/O model. [for now]

・Read strings from the command line.

・Print strings to standard output.  
 
 
 
 
 

 
 
Q. How to read integers from the command line?
A. The system method Integer.parseInt() converts from a String to an int.
 
Q. How to print integers to standard output?
A. When a String is concatenated with an int, Java converts the int to a String.

standard input command-l ine
arguments

standard output

standard drawing

standard audio

standard picture

14

Input and output with integers

15

public class IntOps {

 public static void main(String[] args) {

 int a = Integer.parseInt(args[0]);

 int b = Integer.parseInt(args[1]);

 int sum = a + b;

 int prod = a * b;

 int quot = a / b;

 int rem = a % b;

 System.out.println(a + " + " + b + " = " + sum);

 System.out.println(a + " * " + b + " = " + prod);

 System.out.println(a + " / " + b + " = " + quot);

 System.out.println(a + " % " + b + " = " + rem);

 }

}

converts from
int to String

~/cos126/datatypes> java IntOps 20 3

20 + 3 = 23

20 * 3 = 60

20 / 3 = 6

20 % 3 = 2

~/cos126/datatypes> java IntOps 1234 10

1234 + 10 = 1244

1234 * 10 = 12340

1234 / 10 = 123

1234 % 10 = 4

~/cos126/datatypes> java IntOps 1234 Hello

Exception in thread "main"

java.lang.NumberFormatException:

For input string: "Hello"

...

at IntOps.main(IntOps.java:4)

converts from
String to int

1234 = 123×10 + 4

20 = 6×3 + 2

line number of
run-time error

Order of operations

PEMDAS. Rules for evaluating an arithmetic expression.
 
 
 
 
 
Operator precedence. Priority for grouping operands with operators in an expression.
Operator associativity. Rule for when two operators in an expression have same priority.

16

internet meme

expression equivalent to value remark

3 * 5 - 2 (3 * 5) - 2 13 * has higher precedence than -

3 + 5 / 2 3 + (5 / 2) 5 / has higher precedence than +

3 - 5 - 2 (3 - 5) - 2 -4 left-to-right associative

(3 - 5) - 2 itself -4 better style

8 / 2 * (2 + 2) (8 / 2) * (2 + 2) 16 left-to-right associative
(multiplication and division have same precedence)

Data types: quiz 2

What value does the following expression evaluate to?

 
 
 

A. "12ABC34"

B. "3ABC7"

C. "3ABC34"

D. "12ABC7"

E. Compile-time error.

17

1 + 2 + "ABC" + 3 + 4

string concatenation and addition
have same operator precedence;

associativity is left-to-right

~/cos126/datatypes> jshell

jshell> String s = 1 + 2 + "ABC" + 3 + 4;

s ==> "3ABC34"

BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversionR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The double data type

Typical usage: scientific calculations involving real numbers.

19

values IEEE floating-point numbers

example literals 18.25 -2.0 1.4142135623730951 6.022E23

operations add subtract multiply divide remainder

operators + - * / %

6.022 × 1023

(scientific notation)

only 264 different double values
(not quite the same as real numbers)

 expression value remark

 1.5 + 0.25 1.75

 1.5 - 0.25 1.25

 1.5 * 2.0 3.0

 5.0 / 3.0 1.6666666666666667 not exactly

-1.0 / 0.0 -Infinity not an error

 0.0 / 0.0 NaN “not a number”

only binary fractional values
can be represented exactly, such as

(but not , , or π)

1
4 + 1

16 + 1
128 = 0.3203125

5
3

1
10

applying a double operator
to two double operands

always results in a double
(never results in an error)

5
3

Excepts from Java’s Math library

20

Math library function description

static double abs(double a) absolute value of a

static double max(double a, double b) maximum of a and b

static double min(double a, double b) minimum of a and b

static double sin(double theta) sine (sin θ)

static double cos(double theta) cosine (cos θ)

static double tan(double theta) tangent (tan θ)

static double exp(double a) exponential (ea)

static double log(double a) natural logarithm (log e a)

static double sqrt(double a) positive square root ()

static double pow(double a, double b) power (ab)

static long round(double a) round to the nearest integer

static double random() pseudorandom number in [0, 1)

static double E value of e (constant)

static double PI value of π (constant)

also defined for int

You can discard your
calculator now (please).

a
 expression value

Math.max(1.0, 2.5) 2.5

Math.cos(0.0) 1.0

Math.sqrt(2.0) 1.4142135623730951

Math.random() 0.7707780210347349

Math.PI 3.141592653589793

Quadratic equation

Goal. Print the solutions to the equation , assuming .ax2 + bx + c = 0 a ≠ 0

public class Quadratic {

 public static void main(String[] args) {

 // Parse coefficients from command-line.
 double a = Double.parseDouble(args[0]);

 double b = Double.parseDouble(args[1]);

 double c = Double.parseDouble(args[2]);

 // Calculate roots of ax^2 + bx + c = 0.
 double discriminant = b*b - 4.0*a*c;

 double d = Math.sqrt(discriminant);

 double root1 = (-b + d) / (2.0*a);

 double root2 = (-b - d) / (2.0*a);

 // Print the two roots.
 System.out.println(root1);

 System.out.println(root2);

 }

}

~/cos126/datatypes> java Quadratic 1.0 -3.0 2.0

2.0

1.0

~/cos126/datatypes> java Quadratic 1.0 -1.0 -1.0

1.618033988749895

-0.6180339887498949

~/cos126/datatypes> java Quadratic 1.0 1.0 1.0

NaN

NaN

21

x2 − 3x + 2

x2 − x − 1

x2 + x + 1

1 ± 5
2

−1 ± 3i
2

BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversionR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

The boolean data type

Typical usage: decision making in a program.

24

values true and false

literals true false

operations not and or

operators ! && ||

expression value

false && false false

false && true false

true && false false

true && true true

truth table for AND

expression value

false || false false

false || true true

true || false true

true || true true

truth table for OR

expression value

!false true

!true false

truth table for NOT

logical operators

stay tuned for conditionals and loops

Boolean meme

25

Equality and comparison operators

Equality and comparison operators. To compare numeric values.

・Operands: two numeric expressions.

・Evaluates to: a value of type boolean.

26

operator meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 13 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 > 13

>= greater than or equal 2 >= 2 2 >= 3

equality and comparison operators in Java

can be literals, variable, or arbitrary expressions

Equality and comparison operators: examples

27

zero denominator? denominator == 0

non-negative discriminant? (b*b - 4.0*a*c) >= 0.0

divisible by 60? (minutes % 60) == 0

RGB color is not black? (red > 0) || (green > 0) || (blue > 0)

valid month? (month >= 1) && (month <= 12)

invalid month? !((month >= 1) && (month <= 12))

floating-point roundo" error (0.1 * 3.0) == 0.3

string equality args[0] == "Hello"

don’t do this!
(evaluates to false)

or this!
(always evaluates to false)

compound boolean expressions

parentheses for clarity:
arithmetic operators have
higher precedence than

equality/comparison operators

Example of computing with booleans: leap year test

Q. Is a given year a leap year?
A. Yes if either: (Case A:) divisible by 400 or (Case B:) divisible by 4 but not 100.

28

public class LeapYear {

 public static void main(String[] args) {

 int year = Integer.parseInt(args[0]);

 boolean isLeapYear;

 // Case B: divisible by 4 but not 100
 isLeapYear = (year % 4 == 0) && (year % 100 != 0);

 // ...or Case A: divisible by 400
 isLeapYear = isLeapYear || (year % 400 == 0);

 System.out.println(isLeapYear);

 }

}

~/cos126/datatypes> java LeapYear 2024

true

~/cos126/datatypes> java LeapYear 2023

false

~/cos126/datatypes> java LeapYear 1900

false

~/cos126/datatypes> java LeapYear 2000

true

if argument to System.out.println() is of type boolean,
it prints either true or false

Gregorian calendar

Data types: quiz 3

What does the following expression evaluate to?

 
 
 

A. Works: equivalent to (month >= 1) && (month <= 12).

B. Compile-time error: equivalent to (1 <= month) <= 12.

29

1 <= month <= 12

~/cos126/datatypes> jshell

jshell> int month = 10;

jshell> 1 <= month <= 12

| Error:

| bad operand types for binary operator

'<='

| first type: boolean

| second type: int

| 1 <= month <= 12

| ^--------------^

BUILT-IN DATA TYPES

‣ strings
‣ integers
‣ floating-point numbers
‣ booleans
‣ type conversionR O B E R T S E D G E W I C K

K E V I N W A Y N E

C
om

puter Science

Computer
Science

An Interdisciplinary Approach

https://introcs.cs.princeton.edu

https://introcs.cs.princeton.edu

Data types

Types limit the allowable operations on values and determine the meaning of those operations.
 
 
 
 
 
 
 
 
 
 
Java compiler. The compiler checks for type mismatch errors in your code.

31

public class StringMultiply {

 public static void main(String[] args) {

 String s = "123" * "456";

 }

}

~/cos126/datatypes> javac StringMultiply.java

StringMultiply.java:3: error: bad operand types

for binary operator '*'

 String s = "123" * "456";

 ^

 first type: String

 second type: String

1 error

Data types

Types limit the allowable operations on values and determine the meaning of those operations.
 
 
 
 
 
 
 
 
 
 
 
 
Static typing. Every Java variable and expression has a type that is known at compile time.

・Benefit: compiler catches entire class of programming errors automatically.

・Drawback: extra boilerplate code.
32

can’t subtract, multiply, or divide
two String or boolean values

(compile-time errors)

operator int double boolean String

+ addition addition no concatenation

- subtraction subtraction no no

* multiplication multiplication no no

/ integer division division no no

&& no no logical AND no

|| no no logical OR no

! no no logical NOT no

< less than less than no no

⋮ ⋮ ⋮ ⋮ ⋮

Type-conversion catastrophe

Ariane 5 rocket.

・European Space Agency spent a decade and $7 billion in research and development.

・Rocket self-destructed 39 seconds after first launch.

・Source of bug: unsafe type conversion of 64-bit floating-point number to 16-bit integer.

33

code worked fine in Ariane 4
(but Ariane 5 velocity was much higher)

https://www.youtube.com/watch?v=PK_yguLapgA

Type conversions with built-in types

Type conversion is an essential aspect of programming.
 
Automatic type conversions.

・String conversion: from any type to String (via string concatenation).

・Numeric promotion: from int to double (when a double is expected).
 
 
System methods.

・ Integer.parseInt() from String to int.

・ Double.parseDouble() from String to double.
 
 
Explicit casts from one type to another.

・Cast from double to int.

・Cast from int to double.

34

expression type value

"x = " + 99 String "x = 99"

11 * 0.25 double 2.75

expression type value

Integer.parseInt("126") int 126

Double.parseDouble("2.5") double 2.5

expression type value

(int) 2.71828; int 2

(double) sum / n; double average

every int can be exactly
represented as a double

two int variables

cast operatordiscards fractional part

cast has higher
precedence

Example of type conversion

 Q. What is type and value of each expression on the left?

expression type value remark

(7 / 2) * 2.0 double 6.0
integer division;

then promotion to double

(7 / 2.0) * 2 double 7.0
promotion to double;

then floating-point division

"12" + 6 String "126" conversion to String

0 == false compile-time error can’t compare
int to boolean

35

Simulate the rolling of a fair die

Goal. Given an integer n > 0, generate a uniformly random integer between 1 and n.

36

n = 6 n = 10 n = 100

each possible integer
is equally likely

Generate pseudo-random integers

Problem. Given an integer n > 0, generate a uniformly random integer between 0 and n − 1.
 
Useful system method. Math.random() returns a pseudorandom double value in [0, 1).
 
Approach. Scale to desired range, round down to nearest integer.

public class RandomInt {

 public static void main(String[] args) {

 int n = Integer.parseInt(args[0]);

 double r = Math.random();

 int result = (int) (r * n);

 System.out.println(result);

 }

}

37

String to int
(system method)

double to int
(cast)

int to double
(automatic)

~/cos126/datatypes> java RandomInt 6

3

~/cos126/datatypes> java RandomInt 6

0

~/cos126/datatypes> java RandomInt 6

5

~/cos126/datatypes> java RandomInt 10000

3184

can return 0.0
can’t return 1.0

not truly random,
but close enough for

most applications

Overview

This lecture. Write programs with declaration, assignment, and print statements.
Next week. Write programs with conditionals and loops.

38

straight-line control flow control flow with conditionals and loops

Lecture Slides © Copyright 2025 Robert Sedgewick and Kevin Wayne

Credits

media source license

PEMDAS Mometrix

PEMDAS meme New York Times

Scientific Calculator Wikimedia CC BY-SA 3.0

Solving Quadratic Equations Adobe Stock education license

Patriot Missile Launcher Raytheon

Incorrectly Calculated Range Gate GAO public domain

Scud Missile Hits a U.S. Barracks New York Times

!FALSE redbuble.com

Ariane 5 Rocket Launch European Space Agency

Two Red Dice Wikimedia public domain

Ten-Sided Die Wikimedia CC BY-SA 3.0

Hundred-Sided Die gameoutonline.com

https://www.mometrix.com/academy/order-of-operations/
https://www.nytimes.com/2019/08/02/science/math-equation-pedmas-bemdas-bedmas.html
https://commons.wikimedia.org/wiki/File:Calculator_scientific.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://stock.adobe.com/images/solving-quadratic-equations/13191894
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://breakingdefense.com/2015/02/the-biggest-thing-since-silicon-raytheons-gallium-nitride-breakthrough/
https://www.gao.gov/assets/imtec-92-26.pdf
https://wiki.creativecommons.org/wiki/public_domain
https://www.nytimes.com/1991/02/26/world/war-in-the-gulf-scud-attack-scud-missile-hits-a-us-barracks-killing-27.html
https://www.redbubble.com/i/poster/FALSE-it-s-funny-because-it-s-true-Funny-Programming-meme-by-ProgrammingMeme/65173327.E40HW
https://www.youtube.com/watch?v=PK_yguLapgA
https://commons.wikimedia.org/wiki/File:Two_red_dice_01.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:10_sided_die.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://gameoutonline.com/how-to-roll-a-d100-in-dungeons-and-dragons-5th-edition/

