
Software Engineering
(Part 4)

Copyright © 2024 by
Robert M. Dondero, Ph.D.

Princeton University

1

• Requirements
analysis

• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

Objectives

Stages of SW dev

How to order
the stages

Objectives

• We will cover these
software engineering
topics:

2

Objectives

3

Software Engineering lectures:

Part 1 Requirements analysis
Design (general)

Part 2 Design (object-oriented)
Implementation
Debugging

Part 3 Testing
Evaluation

Part 4 Maintenance
Process models

So the system is finished. Or is it?

4

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

5

Maintenance

• Maintenance
– Alias continuance
– How can I ensure that the system continues

to fulfill the users’ needs through time?

6

Maintenance
• Perfective maintenance

– Add new features, improve (performance of)
existing features

– Analyze execution profiles
• Adaptive maintenance

– Modify the system to meet changes in its
environment

• Corrective maintenance
– Fix bugs

• Preventive maintenance
– Refactor code to make it more maintainable

Rod Stephens.
Beginning Software Engineering.
Wiley. 2015

7

• Tool support for profiling
– Python: cProfile module

• Example...

Maintenance: Profiling

8

• Recall profiling1/concord.py from an
early lecture. How could that program
easily be made more efficient?

– Browse to
https://cos333attend.cs.princeton.edu to
answer

Question (lecture20part4)

9

https://cos333attend.cs.princeton.edu

• Profiling concord.py
– See profiling1/

• concord.py
– From Python Language (Part 5) lecture

• writeprofile.py
• buildandrun
• buildandrun.bat

Maintenance: Profiling

10

Maintenance: Profiling

11

$ cd profiling1
$./buildandrun

Create concord.profile
python -m cProfile -o concord.profile concord.py < Bible.txt
welcome: 1
to: 13569
you: 2621
have: 3905
arrived: 3
at: 1571
a: 8178
plain: 76
text: 1
...

…
alleluia: 4
omnipotent: 1
chalcedony: 1
sardonyx: 1
chrysolyte: 1
chrysoprasus: 1
transparent: 1
proceeding: 1

Generate the report
python writeprofile.py concord.profile > report.txt

To view the report examine the contents of report.txt
$

Maintenance: Profiling

12

$ cat report.txt
Mon Apr 24 20:03:51 2023 concord.profile

 698882 function calls (698878 primitive calls) in 0.798 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 114157 0.277 0.000 0.659 0.000 concord.py:13(process_line)
 114157 0.257 0.000 0.257 0.000 {method 'findall' of 're.Pattern' objects}
 1 0.079 0.079 0.797 0.797 concord.py:25(main)
 12614 0.058 0.000 0.058 0.000 {built-in method builtins.print}
 114157 0.050 0.000 0.078 0.000 /usr/lib/python3.10/re.py:288(_compile)
 114157 0.029 0.000 0.106 0.000 /usr/lib/python3.10/re.py:249(compile)
 114171 0.027 0.000 0.027 0.000 {built-in method builtins.isinstance}
 114157 0.019 0.000 0.019 0.000 {method 'lower' of 'str' objects}
 592 0.001 0.000 0.002 0.000 /usr/lib/python3.10/codecs.py:319(decode)
 592 0.001 0.000 0.001 0.000 {built-in method _codecs.utf_8_dec
…

• Profiling concord.py
– See profiling2/

• concord.py
• writeprofile.py
• buildandrun
• buildandrun.bat

Maintenance: Profiling

13

Maintenance: Profiling

14

$ cd profiling2
$./buildandrun

Create concord.profile
python -m cProfile -o concord.profile concord.py < Bible.txt
welcome: 1
to: 13569
you: 2621
have: 3905
arrived: 3
at: 1571
a: 8178
plain: 76
text: 1
...

…
alleluia: 4
omnipotent: 1
chalcedony: 1
sardonyx: 1
chrysolyte: 1
chrysoprasus: 1
transparent: 1
proceeding: 1

Generate the report
python writeprofile.py concord.profile > report.txt

To view the report examine the contents of report.txt
$

Maintenance: Profiling

15

$ cat report.txt
Mon Apr 24 20:07:54 2023 concord.profile

 356414 function calls (356410 primitive calls) in 0.577 seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 114157 0.236 0.000 0.451 0.000 concord.py:13(process_line)
 114157 0.196 0.000 0.196 0.000 {method 'findall' of 're.Pattern' objects}
 1 0.068 0.068 0.577 0.577 concord.py:24(main)
 12614 0.057 0.000 0.057 0.000 {built-in method builtins.print}
 114157 0.018 0.000 0.018 0.000 {method 'lower' of 'str' objects}
 592 0.001 0.000 0.001 0.000 {built-in method _codecs.utf_8_decode}
 592 0.001 0.000 0.002 0.000 /usr/lib/python3.10/codecs.py:319(decode)
 1 0.000 0.000 0.577 0.577 concord.py:1(<module>)
…

Maintenance: Profiling

• Which version of concord.py is better?

• Version 2 has:
– Better performance
– By a large margin

• Version 1 has:
– Better modularity

• Weaker function-level coupling
– (Arguably) better clarity
– By a small margin

16

Maintenance: Profiling Tools

Language Profiling Tool

Python cProfile

Java hprof & JPerfAnal *

C (x86-64 or ARM) gprof *

C (x86-64) OProfile *

JavaScript (browser) Chrome Developer Tools
Firefox Performance Tool

JavaScript (Node.js) Node.js profiler

* See me if you want an example
17

Maintenance: Refactoring

Martin Fowler 2000

18

• Bad smells in code
Duplicated code
Long method
Long parameter list
Divergent change
Shotgun surgery
Feature envy
Data clumps
Primitive obsession
Switch statements
Parallel inheritance hierarchies
Lazy class

Speculative generality
Temporary field
Message chains
Middle man
Inappropriate intimacy
Alternative classes with diff
interfaces
Incomplete library class
Data class
Refused bequest
Comments

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring

19

Maintenance: Refactoring
1. Composing methods (9)
 Extract method
 Inline method
 Inline temp
 Replace temp with query
 Introduce explaining variable
 Split temporary variable
 Remove assignments to parameters
 Replace method with method object
 Substitute algorithm

2. Moving features between
 objects (8)
 Move method
 Move field
 Extract class
 Inline class
 Hide delegate
 Remove middle man
 Introduce foreign method
 Introduce local extension

20

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring
3. Organizing data (16)
 Self encapsulate field
 Replace data value with object
 Change value to reference
 Change reference to value
 Replace array with object
 Duplicate observed data
 Change unidirectional association
 to bidirectional
 Change bidirectional association
 to unidirectional
 Replace magic number with
 symbolic constant
 Encapsulate field
 Encapsulate collection
 Replace record with data class
 Replace record with class data
 Replace type code with subclasses
 Replace type code with state/strategy
 Replace subclass with fields

4. Simplifying conditional
 expressions (8)
 Decompose conditional
 Consolidate conditional expression
 Consolidate duplicate conditional
 fragments
 Remove control flag
 Replace nested conditional with
 guard clauses
 Replace conditional with
 polymorphism
 Introduce null object
 Introduce assertion

21

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring
5. Making method calls simpler (15)
 Rename method
 Add parameter
 Remove parameter
 Separate query from modifier
 Parameterize method
 Replace parameter with explicit
 methods
 Preserve whole object
 Replace parameter with method
 Introduce parameter object
 Remove setting method
 Hide method
 Replace constructor with factory
 method
 Encapsulate downcast
 Replace error code with exception
 Replace Exception with test

6. Dealing with generalization (12)
 Pull up field
 Pull up method
 Pull up constructor body
 Push down method
 Push down field
 Extract subclass
 Extract superclass
 Extract Interface
 Collapse hierarchy
 Form template method
 Replace inheritance with delegation
 Replace delegation with inheritance

22

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring

7. Big refactorings (4)
 Tease apart inheritance
 Convert procedural design to objects
 Separate domain from presentation
 Extract hierarchy

23

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Total: 72

• Replace Type Code with Subclasses
– You have an immutable type code that

affects the behavior of a class
– Replace the type code with subclasses

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring Example

24

• Replace Type Code with Subclasses
public class Shape
{
 private static final int RECTANGLE = 0;
 private static final int SQUARE = 1;
 private int shapeType;
 …
 public void move()
 {
 switch (shapeType)
 { case RECTANGLE:
 …
 break;
 case SQUARE:
 …
 break;
 }
 }
}

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring Example

25

Before

• Replace Type Code with Subclasses

public abstract class Shape
{
 public abstract void move();
}
public class Rectangle extends Shape
{
 public void move { … }
}
public class Square extends Rectangle
{
 public void move { … }
}

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring Example

26

After

Maintenance: Refactoring
Smell Common Refactorings

Alternative classes
with diff interfaces

Rename method, move method

Comments Extract method, introduce assertion

Data class Move method, encapsulate field, encapsulate
collection

Data clumps Extract class, introduce parameter object, preserve
whole object

Divergent change Extract class

Duplicated code Extract method, extract class, pull-up method, form
template method

Feature envy Move method, move field, extract method

Inappropriate intimacy Move method, move field, change bidirectional
association to unidirectional, replace inheritance with
delegation, hide delegate

27

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring
Smell Common Refactorings

Primitive obsession Replace data value with object, extract class,
introduce parameter object, replace array with
object, replace type code with class, replace type
code with subclasses, replace type code with
state/strategy

Refused bequest Replace inheritance with delegation

Shotgun surgery Move method, move field, inline class

Speculative generality Collapse hierarchy, inline class, remove parameter,
rename method

Switch statements Replace conditional with polymorphism, replace
type code with subclasses, replace type code with
state/strategy, replace parameter with explicit
methods, introduce null object

Temporary field Extract class, introduce null object

28

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

Maintenance: Refactoring
Smell Common Refactorings

Incomplete library
class

Introduce foreign method, introduce local extension

Large class Extract class, extract subclass, extract interface,
replace data value with object

Lazy class Inline class, collapse hierarchy

Long method Extract method, replace temp with query, replace
method with method object, decompose conditional

Long parameter list Replace parameter with method, introduce
parameter object, preserve whole object

Message chains Hide delegate

Middle man Remove middle man, inline method, replace
delegation with inheritance

Parallel inheritance
hierarchies

Move method, move field

29

Martin Fowler.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley. New York. 2000.

How should you order those stages?

30

Agenda

• Requirements analysis
• Design
• Implementation
• Debugging
• Testing
• Evaluation
• Maintenance
• Process models

31

Process Models

• Process models
– How should you order those stages?
– (And much more)

32

Predictive Adaptive

Waterfall
V Model

RAD
 Martin RAD
 Agile
 XP
 Scrum
 Lean
 Crystal
 FDD
 Agile Unified
 DSDM
 KANBAN

Spiral
Rational Unified

Process Models: Spectrum

Waterfall with Feedback
Incremental Waterfall
Sashimi

Rod Stephens.
Beginning Software Engineering.
Wiley. 2015

33

Requirements

Design

Implementation

Verification

Maintenance

Requirements analysis

Design

Implementation, Debugging

Testing, Evaluation

Maintenance

Process Models: Waterfall

34

Process Models: Waterfall

• Completely predictive (non-adaptive)
– From manufacturing industry

• Used by many early software dev projects
– No other process models were known!

• Required by many funding agencies
– Agency defines requirements
– SW company does the rest, while agency

monitors progress

35

Predictive Models: Waterfall

• Commentary
– Perfect if all predictions are correct
– It’s hardly ever the case that all predictions

are correct!

36

Process Models: Agile

Abrahamson P, Salo O, Ronkainen J, Warsta J (2002).
Agile Software Development Methods: Review and Analysis.
(Technical report). VTT. 478. 37

Process Models: Extreme

2000Kent Beck

38

Diagram from Wikipedla Extreme Programming page

Requirements
analysis

Design

Impl., Debugging

Testing M
ai

nt
en

an
ceEvaluation

Process Models: Extreme

39

Process Models: Extreme

• As adaptive (non-predictive) as possible
– “Extremely” adaptive
– “Embrace change”

• Essentially, code is the only artifact
produced

40

• Collective ownership
• Continuous

integration
• 40-hour work week
• On-site customer
• Coding standards

Kent Beck.
Extreme Programming Explained: Embrace Change.
Addison-Wesley. New York. 2000.

Process Models: Extreme

• The planning game
• Small releases
• Metaphor
• Simple design
• Testing
• Refactoring
• Pair pgmming

41

Process Models: Extreme

• Commentary
– Appealing!
– Too extreme?

• An excuse for programmers to avoid some tasks
that they find less fun?

42

Process Models

43

Use Predictive When: Use Adaptive When:

Developers are plan-oriented,
adequately skilled, and have
access to external knowledge

Developers are agile, highly
skilled, collocated, and
collaborative

Customers are not collocated Customers are collocated

Requirements are knowable
early and largely stable

Requirements are largely
emergent and change rapidly

Team and product are large Team and product are small

Primary objective is high
assurance

Primary objective is rapid
value

Boehm, B.
“Get Ready for the Agile Methods, With Care”
Computer 35 (1): 64-69.

Predictive vs. Adaptive models:

Frederick
Brooks

Process Models: Commentary

44

1975
1995

“All software involves essential tasks, the fashioning of
the complex conceptual structures that compose the
abstract software entity, and accidental tasks, the
representation of those abstract entities in programming
languages and the mapping of these onto machine
languages within space and speed constraints. Most of
the big gains in software productivity have come from
removing artificial barriers that have made the accidental
tasks inordinately hard.”

Frederick Brooks.
The Mythical Man Month: Essays on Software Engineering
Addison-Wesley. New York. 1995.

Process Models: Commentary

45

“There is no single development, in either technology
or management technique, which by itself promises
even one order of magnitude improvement in productivity,
in reliability, in simplicity.”

“How much of what software engineers now do is still
devoted to the accidental, as opposed to the essential?
Unless it is more than 9/10 of all effort, shrinking all the
accidental activities to zero time will not give an order
of magnitude improvement.”

Frederick Brooks.
The Mythical Man Month: Essays on Software Engineering
Addison-Wesley. New York. 1995.

Process Models: Commentary

46

Brian
Kernighan

Process Models: Commentary

47

Software Methodology and Snake Oil
– Each methodology has the germ of a useful idea
– Each claims to solve major programming problems
– Some are promoted with religious fervor
– In fact most don’t seem to work well
– Or don’t seem to apply to all programs
– Or can’t be taught to others
– A few are genuinely useful and should be
 part of everyone’s repertoire

Brian Kernighan
COS 333 Lecture Slides

Process Models: Commentary

48

Process Models: Commentary

• In summary...
• (Kernighan) Some process models offer

good ideas, but...
• (Brooks) Software development is

inherently hard, and...
• (Kernighan) Many process models are

over-hyped, so...
• (Kernighan) View process models with

healthy skepticism

49

Process Models: Commentary

• Every project is unique
– Choose a process model that fits the project
– Be willing to customize that process model

50

Process Models: Commentary
• Core points:

– Requirements: First determine who the
users are and what your system should do
for them

• Involve the users!!!
– Design: Then determine how you want your

system to work
– Implement, test: Then code and test your

system
– Evaluate: Then evaluate your system

• Involve the users!!!
– Iterate as often as you reasonably can

51

Summary
• We have covered

these software
engineering topics:

• (1) Requirements
analysis

• (2) Design
• (3) Implementation
• (4) Debugging
• (5) Testing
• (6) Evaluation
• (7) Maintenance
• (8) Process models

52

