
Princeton University
COS 333: Advanced Programming Techniques

Git and GitHub Primer

Introduction

Git is a distributed version control system. It was created by Linus Torvalds – the same person who created the
Linux operating system – in 2005 for the purpose of managing multi-programmer development of the Linux kernel.
Using Git you create repositories containing, typically, source code.

GitHub is an Internet service for hosting Git repositories. It was created in 2007 by Chris Wenstrath, P. J. Hyett,
Tom Preston-Werner, and Scott Chacon. It’s an Internet service for hosting Git repositories.

You must use Git and GitHub for your project. It would be reasonable to use Git and GitHub for your COS 333
assignments too, and I highly recommend that you do so.

If you want to use a version control system other than Git (for example, Mercurial or Subversion), or some hosting
service other than GitHub (for example, BitBucket), then please discuss the matter with me before doing so.

This document describes a subset of Git and GitHub that may be sufficient for your work in COS 333. The first
sections of this document describe setup steps that you should perform near the beginning of the semester. The
remaining sections describe common use cases.

Let’s say that you want to use Git and GitHub for Assignment 1...

Setup Step 1: Installing Git

Perform this step one time only, near the beginning of the semester.

Install the Git program on the computer that you will use to do software development. The instructions for installing
Git depend upon what kind of computer you will use. If your development computer is:

• A courselab computer, then you can skip this step. Git already is installed on courselab.
• Your own Mac computer (running OS X version 10.9 or above), then issue a git command in a terminal

window. If Git isn't already installed, then OS X will prompt you to install the Xcode command-line tools.
Installing the Xcode command-line tools also installs Git.

• Your own computer running Microsoft Windows, then browse to http://git-scm.com/download/win. The
download and install will start automatically.

• Your own computer running Linux, then use your package manager to install Git.

Setup Step 2: Configuring Git

Perform this step one time only, near the beginning of the semester.

Configure Git to indicate your identity and preferences. To do that, issue these commands in a terminal window:

Page 1 of 9

http://git-scm.com/download/win

$ git config --global user.name "yourname"
$ git config --global user.email youremailaddress
$ git config --global color.ui auto
$ git config –-global core.editor yourpreferrededitor

For example, I might issue these commands:
$ git config --global user.name "Robert Dondero"
$ git config --global user.email rdondero@cs.princeton.edu
$ git config --global color.ui auto
$ git config –-global core.editor emacs

For youremailaddress I recommend that you specify your Princeton email address, but it's fine to specify any
of your email addresses.

Git uses yourpreferrededitor if you issue a git commit command without the -m option. The git
commit command is described later in this document.

In response to those commands Git stores your settings in a file named .gitconfig in your home directory.

Setup Step 3: Creating a GitHub Account

Perform this step one time only, near the beginning of the semester.

Create a GitHub free account. Doing so will allow you to create private GitHub repositories with an unlimited
number of collaborators. To do that, browse to https://github.com. Click on the Sign up for GitHub button, and
follow the instructions. Eventually your browser displays a What do you want to do first? page.

Setup Step 4: Creating a GitHub Repository

Perform this step one time only, near the beginning of the semester.

Continued from the previous step:

• In the What do you want to do first page, click on the Create a repository button.
• In the resulting page, for Repository name enter cos333asgt1, select the Private radio button, check the

Add a README file checkbox, and click on the Create repository button.
• In the resulting COS333asgt1 page, click on the Setting tab, click on Manage access, click on the Invite a

collaborator button, and complete the dialog to invite your teammate to collaborate.

IMPORTANT: Your GitHub assignment repositories must be private such that only you and your
assignment teammate have access to them.

IMPORTANT: I prefer that your GitHub project repository be private such that only you, your project
teammates, and the COS 333 instructors have access to it. But it’s OK to make your GitHub project
repository publicly readable if you have a compelling reason to do so.

(Optional) To create additional repositories… Browse to https://github.com/ and sign into your account.
Click on the plus sign at the top right of the page. Click on New Repository.

Page 2 of 9

https://github.com/
https://github.com/

Setup Step 5: Creating a Personal Access Token

Perform this step one time only, near the beginning of the semester.

To use GitHub via its CLI (command-line interface), you must create a GitHub personal access token (PAT). The
instructions for doing so are at this page:

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-
personal-access-token

In summary:

• Browse to your GitHub repository page
• Click the profile icon at the upper right to display a drop-down menu.
• In the drop-down menu click on Settings
• In the resulting page, click on Developer Settings.
• In the resulting page, click on Personal access tokens.
• In the resulting page, click on Generate new token.
• In the Note area, enter “COS 333”. Check the repo checkbox. Click on the Generate Token button.
• The resulting page displays a PAT. It’s important to remember your PAT. Copy it to your computer’s

clipboard, and maybe store it in a file, at least temporarily.

From this point forward you use the GitHub CLI (that is, the GitHub command-line interface, that is, git
commands issued in a terminal window) to interact with GitHub.

Setup Step 6: Cloning Your GitHub Repository

Perform this step one time only, near the beginning of the semester.

• Open a terminal window on your computer. Issue cd commands to change your working directory to the
one where you want your development Git repository to reside. Issue this command:

git clone https://github.com/yourgithubusername/cos333asgt1.git

For example, I might issue this command:
$ git clone https://github.com/rdondero/cos333asgt1.git

When prompted for a username, enter your GitHub username. When prompted for a password, enter the
PAT that you generated in the previous step. The command generates output similar to this:

Cloning into 'cos333asgt1'...
Username for 'https://github.com': yourgithubusername
Password for 'https://yourgithubusername@github.com':
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.

Your working directory contains a new directory named cos333asgt1 which contains a README.md
file and a .git directory. The cos333asgt1 directory is your development repository.

Page 3 of 9

https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/github/authenticating-to-github/keeping-your-account-and-data-secure/creating-a-personal-access-token

(Optional) No doubt you will find it inconvenient to enter your GitHub username and PAT each time you
issue a git command that interacts with GitHub. To avoid the need to do so, issue this command one
time:

git config –-global credential.helper store

In response to that command, Git updates the .gitconfig file in your home directory, and stores your
GitHub credentials in a file named .git-credentials in your home directory. After issuing that
command you may need to enter your GitHub username and personal access token one more time when
interacting with GitHub. Thereafter, Git automatically uses your stored GitHub username and PAT when
interacting with GitHub.

Use Cases

Having completed the setup steps, you now have your own private GitHub repository in the GitHub cloud and your
own development repository on your development computer. Use those repositories as vehicles for learning about
Git. In particular, try implementing the use cases given in this document. Experiment!!!

Use Case 1: Adding Files

Perform this step repeatedly throughout the semester as required.

Add file1 and file2 to your development repository and your GitHub repository. To do that, in a terminal window on
your development computer issue these commands:

cd to the dev repo directory.
cd cos333asgt1

Pull the GitHub repo to the dev repo.
git pull

Use an editor to create file1 and file2.

Stage file1 and file2.
git add file1 file2

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Note: If you omit the -m "Message describing the commit" option, then Git launches the
editor that you specified in Setup Step 2, with the expectation that you will compose a message using that
editor.

Push the dev repo to the GitHub repo.
git push origin main

(Optionally) check status.
git status

Page 4 of 9

Use Case 2: Changing Files

Perform this step repeatedly throughout the semester as required.

Change file1 and file2 in your development repository and your GitHub repository. To do that, in a terminal window
on your development computer issue these commands:

cd to the dev repo directory.
cd cos333asgt1

Pull the GitHub repo to the dev repo.
git pull

Use an editor to change file1 and file2.

Stage file1 and file2.
git add file1 file2

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Push the dev repo to the GitHub repo.
git push origin main

(Optionally) check status.
git status

Use Case 3: Removing Files

Perform this step repeatedly throughout the semester as required.

Remove file1 and file2 from your development repository and your GitHub repository. To do that, in a terminal
window on your development computer issue these commands:

cd to the dev repo directory.
cd cos333asgt1

Pull the GitHub repo to the dev repo.
git pull

Stage file1 and file2.
git rm file1 file2

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Push the dev repo to the GitHub repo.
git push origin main

(Optionally) check status.
git status

Page 5 of 9

Use Case 4: Resolving Conflicts

Perform this step repeatedly throughout the semester as required.

A conflict occurs when (1) your teammate pushes a new version of a file to your GitHub repository, (2) you edit an
old version of the same file in your development repository, and (3) you attempt to pull from the GitHub repository
to your development repository or push from your development repository to the GitHub repository.

This sequence of commands illustrates a conflict and how to resolve it...

Your teammate issues these commands:

cd to the dev repo directory.
cd cos333asgt1

Pull the GitHub repo to the dev repo.
git pull

You issue these commands:

cd to the dev repo directory.
cd repodir

Pull the GitHub repo to the dev repo.
git pull

Your teammate uses an editor to change file1. Your teammate issues these commands:

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

You use an editor to change file1. You issue these commands:

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Your teammate issues this command:

Push the dev repo to the GitHub repo.
git push origin main

You issue this command:

Push the dev repo to the GitHub repo; fails!
git push origin main

Your git push command fails because of a conflict. Git recommends that you pull from the GitHub repository.

Page 6 of 9

So you issue this command:

Pull the GitHub repo to your dev repo.
git pull

Git notes that file1 is in conflict. Git annotates file1 to note the points of conflict. You edit file1 to resolve the
conflicts and eliminate the annotations. Then you issue these commands:

Stage file1
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Push the dev repo to the GitHub repo; succeeds!
git push origin main

Use Case 5: Branching

Perform this step repeatedly throughout the semester as required.

You decide to implement a new experimental feature in your application. It may not work out, so you don't want to
implement the experiment in the main branch. Instead you decide to implement the experiment in a new branch
named exp.

You issue these commands:

cd to the dev repo directory.
cd cos333asgt1

Pull the GitHub repo to your dev repo.
git pull

Create a new branch named exp.
git branch exp

Make exp the current branch.
git checkout exp

You edit file1 extensively, but not completely. Oh no! Your teammate informs you of a bug in file1 that you must
fix in a hurry. It's a good thing that you're implementing your experiment in a non-main branch! You issue these
commands:

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Make main the current branch.
git checkout main

You edit file1 to fix the bug. Then you issue these commands:

Page 7 of 9

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

Push the main branch to the origin (GitHub) repo.
git push origin main

You decide to resume your work on the experiment. Of course you must merge your bug fix into your exp branch.
You issue these commands:

Make exp the current branch.
git checkout exp

Merge the main branch into the current (exp) branch.
git merge main

Git notes that file1 is in conflict. Git annotates file1 to note the points of conflict. You edit file1 to resolve the
conflicts and eliminate the annotations. Then you issue these commands:

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

You finish editing file1 with your experimental code. Then you issue these commands:

Stage file1.
git add file1

Commit the staged files to the dev repo.
git commit -m "Message describing the commit"

You're happy with the outcome of the experiment, so you decide to merge your exp branch into the main branch.
You issue these commands:

Make main the current branch.
git checkout main

Merge the exp branch into the current (main) branch.
git merge exp

Push the main branch to the origin (GitHub) repo.
git push origin main

You decide that you no longer need your exp branch, so you issue this command:

Delete the exp branch from your dev repo.
git branch -d exp

Page 8 of 9

Recommendations

Use branches to develop new features!

Try to avoid conflicts! To do that, (1) pull from your GitHub repository before starting each programming task, and
(2) push to your GitHub repository often – as soon as the programming task is finished to your satisfaction.

When doing an assignment, you or your teammate must copy your assignment code to courselab – for final testing
and submission. To copy your assignment code to courselab you could use sftp, maybe via the FileZilla application.
However, a more efficient approach is to use Git. You could configure Git on courselab, clone your GitHub
repository to a development repository on courselab, and repeatedly pull your code from your GitHub repository to
your development repository on courselab as necessary.

Learning More

There is much more to Git. To learn more I recommend that you read the Git book at
https://git-scm.com/book/en/v2, and the Git reference manual at https://git-scm.com/docs as required.

This document describes how to use Git through its command-line interface. An alternative is to use a graphical
user interface. The page https://en.wikipedia.org/wiki/Comparison_of_Git_GUIs lists many Git graphical clients.
Former COS 333 students have recommended GitHub desktop (for Mac and MS Windows) and TortoiseGit (for MS
Windows).

There also is much more to GitHub. I recommend that you investigate these features after you’re comfortable with
GitHub basics:

• Projects: for tracking goals and progress of a general "project". The official documentation is at
h ttps://help.github.com/en/github/managing-your-work-on-github/about-project-boards . A reasonable
video tutorial is at https://youtu.be/ff5cBkPg-bQ.

• Issues and Pull Requests: for defining and implementing small program features in a collaborative and
scalable way. An introductory guide is at https://guides.github.com/activities/hello-world/. A verbose set
of documents about GitHub flow is at https://help.github.com/en/github/collaborating-with-issues-and-pull-
requests.

• GitHub Pages: for website hosting directly from source code. GitHub’s own Pages introduction is at
https://pages.github.com/.

• Actions: for automatically running code like linters, builders, and deployers whenever you push to GitHub.
The official documentation is at https://help.github.com/en/actions/automating-your-workflow-with-github-
actions.

• Tags and Releases: for creating versions of your code both to release and reference. Tagging in Git is
covered at https://git-scm.com/book/en/v2/Git-Basics-Tagging). Creating GitHub releases is covered at
https://help.github.com/en/github/administering-a-repository/creating-releases.

Copyright © 2021 by Robert M. Dondero, Jr. and Joseph Eichenhofer

Page 9 of 9

https://help.github.com/en/github/administering-a-repository/creating-releases
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://help.github.com/en/actions/automating-your-workflow-with-github-actions
https://help.github.com/en/actions/automating-your-workflow-with-github-actions
https://pages.github.com/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests
https://guides.github.com/activities/hello-world/
https://youtu.be/ff5cBkPg-bQ
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
https://en.wikipedia.org/wiki/Comparison_of_Git_GUIs
https://git-scm.com/docs
https://git-scm.com/book/en/v2

