
Confidential + ProprietaryConfidential + Proprietary

ML for ML Compilers

Yanqi Zhou, Google Brain

Confidential + Proprietary

Background
A compiler transforms a program into machine executable code.

P 2

...

Confidential + Proprietary

Background
● General in face of explosion of models and frameworks.
● Targeting/Retargeting various hardware backends.

High-level Representation

Tensor Expression and Optimization Space

LLVM, CUDA, etc.

Figure credit: https://tvm.apache.org/2019/03/18/tvm-apache-announcement

graph rewriting,
device placement,
operation fusion,
layout and tiling,
scheduling, etc.

Confidential + Proprietary

Background
Search-based Compilers

subgraph

op
tim

iz
at

io
n

 s
co

pe

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Confidential + Proprietary

Background
Search-based Compilers

subgraph

op
tim

iz
at

io
n

 s
co

pe

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

graph

Confidential + Proprietary

Background
Search at sub-graph level can be sub-optimal!

P 6

A common strategy partitions a graph into subgraphs according
to the neural net layers, ignoring cross-layer optimization
opportunities.

Empirical result: a regression of up to 2.6x and 32%
on average across 150 ML models by limiting fusions
in XLA to be within layers.

Confidential + Proprietary

Background
Long Compilation Time

subgraph

op
tim

iz
at

io
n

 s
co

pe

TASO
PET

DeepCuts

FlexTensor

TVM
TensorComp...

Ansor

Halide

Chameleon
AdaTune

XLAgraph

compile time (for ResNet like inference)

minutes hoursseconds

Confidential + Proprietary

Background
A XLA TPU Compiler

P 8

Algebraic simplification,
Dot conversion,

Layout assignment,
Cross-replicas sharding,

Operator fusion,
Rematerialization,

Operator scheduling

Graph-Level
Optimizations

tensor
computation

graph
kernels /

subgraphs

Loop tiling,
Loop ordering/unrolling,

Heuristics
parameters (flags),

Overlapping
data-transfer & compute,

2D register mapping

Kernel-Level
Optimizations

Confidential + Proprietary

Today’s agenda
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf

Confidential + Proprietary

Today’s agenda
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf

Confidential + ProprietaryConfidential + Proprietary

A Learnt Performance Model for TPUs
Samuel Kaufman*, Mangpo Phothilimthana, Yanqi Zhou,
Charith Mendis, Amit Sabne, Mike Burrows

*Internship work at Google

Confidential + Proprietary

XTAT: XLA TPU Autotuner

P 12

Code
Optimizer

ML
program

Learned
Policy

decision

observation

to guide
the search

Learned Cost
ModelHardware

candidate cost

Evaluator

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

blue = optimizations that we tune
yellow = learned models

Phothilimthana et al.,“A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers”, PACT 2021.

Confidential + Proprietary

ML
program

Graph-level
Optimizations:

Algebraic Simplification,
Layout Assignment,

Cross-Replica Sharding,
Operator Fusion,

Rematerialization, etc.

Kernel-level
Optimizations:

Tiling, Vectorization, Flags,
etc.

Learned
Policy

decision

observation

to guide
the search

Learned Cost Model

P 13

Code
Optimizer

Learned Cost
ModelHardware

candidate cost

Evaluator

Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.

Confidential + Proprietary

Learned Cost Model: Objective
● General enough to handle non-trivial constructs

○ e.g. multi-level loop nests
● Generalize across programs of different application domains
● Should not rely on well-crafted features
● Retargetable to different optimization tasks

Confidential + Proprietary

Overview of Cost Model

15

f()
KERNEL

≅ 5.2s
RUNTIME

2. Regression Per Kernel 1. Decompose Into Kernels

Confidential + Proprietary

Benefits of Kernel-level Regression

1. Decompose Into Kernels

● General to various tasks
● More accurate at low-level

representation

Confidential + Proprietary
P 17

Model Design: Model Inputs

GNN

embed
opcode

opcode
ids

opcode
embeddings

kernel feats

node feats

repeat

adjacency
matrix

node
embeddings

||

||

Reduction model:
simple reduction,

LSTM, or
Transformer

feed
forward

kernel
embeddings

runtime
prediction● Node features

○ Opcode
○ Scalar features (e.g. output

tensor shape, tensor layout,
striding, padding, etc.)

● Whole-kernel features
○ Tile size
○ Static performance info

● Adjacency matrix

Confidential + Proprietary
P 18

Model Design: Adjacency Matrix

● An optimized tensor computation
graph consists of multiple kernels.

● Each kernel contains a graph of
nodes of primitive operations.

Confidential + Proprietary
P 19

Model Design: Node Embedding

GNN

● Tensor compute kernel is
represented as a graph.

● Learn node features
conditioned on its neighbors.

● Isomorphism for
generalization

● Choose GraphSAGE

Hamilton et al., GraphSAGE, 2017.

Confidential + Proprietary
P 20

Model Design: Node Embedding

Reduction model:
simple reduction,

LSTM, or
Transformer

feed
forward

kernel
embeddings

runtime
prediction

● Reduce mean, reduce sum
● The final state of an LSTM
● Transformer Encoder

Confidential + Proprietary
P 21

Losses

Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.

Confidential + Proprietary
P 22

Accuracy Evaluation and Baseline

● Accuracy evaluation tasks

○ Tile size selection (relative runtimes)

○ Fusion (absolute runtimes)

● Baseline: XLA’s hand-written, analytical performance model

○ XLA argmins all tile sizes using this performance model

○ Fusion does not use this model. It uses other heuristics.

Confidential + Proprietary
P 23

Accuracy: Tile Size Selection

Compare true runtimes between best
predicted and actual best tile size. APE:

In random split, learned model ~halves APE.

Confidential + Proprietary
P 24

Accuracy: Fusion

Compare Mean Absolute Percentage
Error of kernel runtime predictions.

Random split: learned model improves
MAPE by ~85%.

Confidential + Proprietary
P 25

Ablations: takeaways

● Using a rank loss for the tile-size task reduced APE by 10 pts. on
average.

● GraphSAGE outperformed using a sequence model or Graph
Attention Networks and was less sensitive to hyperparameter
selection.

● Replacing the LSTM/Transformer reduction with a non-learned
reduction works almost as well (and improves inference time).

http://snap.stanford.edu/graphsage/
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf

Confidential + Proprietary
P 26

Training for All Optimization Tasks

● Generate training data from 150 ML models using random
layout, fusion, tile size, and flag configurations.

● Train:
○ one model for all graph-level optimizations to predict

absolute runtime
○ one model for tile-size to predict relative runtime
○ one model for flags to predict relative runtime

● The graph embedding network is shared between tile-size and
flags models.

Confidential + Proprietary
P 27

Tuning with Learned Cost Model

Execute the top k configurations from each worker according to
the model on real hardware and pick the best.
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x)

be
tte

r

be
tte

r

Tuning Time (min)

Confidential + Proprietary

Today’s agenda
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf

Confidential + ProprietaryConfidential + Proprietary

Transferable Graph Optimizers for ML Compilers

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi*, Daniel Wong*,
Peter Ma, Qiumin Xu, Hanxiao Liu, Mangpo Phothilimtha, Shen
Wang, Anna Goldie, Azalia Mirhoseini, and James Laudon

*Internship work at Google

Confidential + Proprietary

What are we trying to address?
● Heuristics based compiler optimizations are suboptimal, treating

each optimization task in isolation.

High-level Representation

Tensor Expression and Optimization Space

LLVM, CUDA, etc.

Figure credit: https://tvm.apache.org/2019/03/18/tvm-apache-announcement

graph rewriting,
device placement,
operation fusion,
layout and tiling,
scheduling, etc.

Confidential + Proprietary

What are we trying to address?
● Existing learning based methods are sample inefficient, tackle a

single optimization problem, or do not generalize to unseen
graphs.
○ Hierarchical device placement
○ Placeto
○ NeuRewriter
○ REGAL

● Generalization is important for deployment

Azalia Mirhoseini and others. A hierarchical model for device placement. ICLR, 2018.
Ravichandra Addanki and others. Placeto: Learning generalizable device placement algorithms for distributed machine learning. NeurIPS, 2019.
Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. Neurips, 2019.
Aditya Paliwal and others. REGAL: transfer learning for fast optimization of computation graphs. ICLR, 2020.

Confidential + Proprietary

GO: Transferable graph optimizers
● Apply machine learning to learn a generalized approach for

compiler graph optimizations
● Tasks

○ Automatic device placement
○ Operation fusion
○ Operation scheduling
○ ...

● Goals
○ Minimize graph runtime by optimizing node attributes
○ Handle large graphs over 10k nodes
○ Generalization on unseen data
○ Transferable across tasks

Confidential + Proprietary

Device placement

𝜋: 𝒢→ⅅ that assigns a device D ∈ ⅅ for all nodes in the given graph G ∈ 𝒢
to maximize a reward r(G, D).

Device 0
Device 1

Confidential + Proprietary

Operation scheduling

a b a b a b

Schedule 1 Schedule 2

𝜋: 𝒢→ℙ that assigns a scheduling priority P ∈ ℙ for all nodes in the given
graph G ∈ 𝒢 to maximize a reward r(G, P).

Confidential + Proprietary

Operation fusion

𝜋: 𝒢→ℱ that assigns a fusion priority F ∈ ℱ for all nodes in the given graph G
∈ 𝒢 to maximize a reward r(G, F).

Confidential + Proprietary

GO: Transferable graph optimizers

Confidential + Proprietary

GO: Transferable graph optimizers
● Generalization across graphs->GraphSAGE embedding layers

Confidential + Proprietary

GO: Transferable graph optimizers
● Generalization across graphs->GraphSAGE embedding layers

○ Invariant to node order.
○ Generalize to unseen nodes, graphs.

Confidential + Proprietary

GO: Transferable graph optimizers
● Long-range dependences->Segmented recurrent attention

Confidential + Proprietary

GO: Transferable graph optimizers
● Specialization for graph types->Input feature conditioning

Confidential + Proprietary

GO: Transferable graph optimizers
● Multiple dependent tasks->Recurrent attention task heads

Confidential + Proprietary

GO: Transferable graph optimizers
● Generalization across graphs

○ T∈{D, P, F}: task
○ θ: parameters of the RL policy
○ 𝒢: empirical distribution of the dataflow graphs.

● Joint optimization across tasks
○ Parameters across the three tasks can be partially shared.
○ The shared policies can be parameterized in the form of multiple

recurrent attention layers.

Confidential + Proprietary

GO: Iterative but non-autoregressive node decisions

● Autoregressive
○ Ideally, compute the action distribution of the node under consideration

based on the actions of all previous nodes:

○ Infeasible as N can be as large as 10K.
● Iterative but non-autoregressive approximation:

○ N sampling procedures are carried out in parallel within each iteration t.
○ Decisions of N nodes are allowed to mutually influence each other.

Confidential + Proprietary

GO: Experiment Setup

● Workloads
○ RNNLM, GNMT, Transformer-XL, Inception-v3, AmoebaNet, WaveNet.
○ Varying architectural parameters (e.g. layers, hidden dim)

● Run time measurement
○ Real-hardware measurement for device placement
○ Industry-standard performance model for the rest tasks

● Baselines
○ Default heuristics in TF (GPU)
○ Human expert solution
○ Simulated annealing
○ Learning-based strategy like HDP

Confidential + Proprietary

GO: Speedup on device placement

Confidential + Proprietary

GO: Generalization on device placement

● Real-hardware measurement
● GO-finetune matches GO-one
● GO-zeroshot better than human placement and HDP

Confidential + Proprietary

GO: Multi-task speedup

● 33%-60% speedup jointly optimizing three tasks, over TF default

Confidential + Proprietary

Today’s agenda
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf

Confidential + Proprietary

A Transferable Constrained RL for Partitioning ML
Modules on Multi-Chip-Modules

xinfeng@ucsb.edu, sudipr@, mangpo@, prakashp@,

ulysse@, azalia@, ebrevdo@, jlaudon@, yanqiz@

Confidential + Proprietary

Proprietary + Confidential

Gyrfalcon: A Multi-Chip-Module Package for ML
Acceleration
● Multi-Chip-Module

○ Combines smaller chiplets
○ Reduce cost and improve yields

● Our target hardware: Gyrfalcon
○ 6x6 Hermosa Chips
○ 432 TFLOPS / 864 TOPS
○ 1 GB SRAM; 290 W; 16 GB/s

die-to-die 1D Ring
● Graph Partitioning is critical

○ Balanced
○ Lower inter-chip

communication

Hermosa x1 die Hermosa x36 ASIC

x1

x36

24 TOPS
32 MB SRAM

[source]

https://sites.google.com/corp/google.com/gyrfalcon/home

Confidential + Proprietary

Proprietary + Confidential

Why a constrained solver?

● Placement Constraints
○ Acyclic dataflow
○ No skipping chips
○ Chip triangle dependency
○ Uncaptured dynamics

Hermosa x1 die Hermosa x36 ASIC

x1

x36

24 TOPS
32 MB SRAM

[source]

https://sites.google.com/corp/google.com/gyrfalcon/home

Confidential + Proprietary

Proprietary + Confidential

Device Placement Constraints

● Acyclic dataflow constraint
○ Data only flows from lower

chip ID to higher chip ID.
○ Reason: (hardware) 1D ring

for inter-chip
communication.

0

1 2

3 4

Chip
0

Chip
1

Chip
2

Chip
3

Chip
0

Chip
1

Chip
2

Chip
3

0 1

2

3

4

ML graph An example of 4 chips

An invalid placement

Confidential + Proprietary

Proprietary + Confidential

Chip
0

Chip
1

Chip
2

Chip
3

0

1

2

3

4

Device Placement Constraints

● No skipping chip constraint
○ Every chip should have at

least one TF node assigned
to it.

○ Reason: (software) virtual
device groups are always
contiguous.

0

1 2

3 4

Chip
0

Chip
1

Chip
2

Chip
3

ML graph An example of 4 chips

An invalid placement

Confidential + Proprietary

Proprietary + Confidential

Chip
0

Chip
1

Chip
2

Chip
3

0 1

2

3

4

Device Placement Constraints

● Chip triangle dependency constraint
○ A -> B -> C and A -> C are not

allowed
○ Example: {Chip 0 -> Chip 1 -> Chip

2} and {Chip 0 -> Chip 2}
○ Reason: (hardware) prevent

inter-chip communication
deadlocks.

0

1 2

3 4

Chip
0

Chip
1

Chip
2

Chip
3

ML graph An example of 4 chips

An invalid placement

Confidential + Proprietary

Proprietary + Confidential

Chip
0

Chip
1

Chip
2

Chip
3

0 1

2

3

4

Device Placement Constraints

● Static constraints:
○ Acyclic dataflow constraint
○ No skipping chip constraint
○ Chip dependency triangle

constraint
● Dynamic constraints:

○ Memory allocation constraint
(OOM)

0

1 2

3 4

Chip
0

Chip
1

Chip
2

Chip
3

ML graph An example of 4 chips

An invalid placement

Confidential + Proprietary

Proprietary + Confidential

Device Placement Constraints

● Static constraints:
○ Easy to mathematically formulate.
○ Constraint solvers can identify invalid placement statically

● Dynamic constraints:
○ Hard to formulate before compilation.
○ RL is able to learn through environment dynamics.

Our contribution: a transferable deep RL working with a constraint solver.

Confidential + Proprietary

Proprietary + Confidential

GO Framework: An RL Approach

Pros: GO can generate placement actions in a non-autoregressive way.

Confidential + Proprietary

Proprietary + Confidential

GO Framework: An RL Approach for Device
Placement
Pros: GO can generate placement actions in a non-autoregressive way.

Cons: GO is not aware of placement constraints, and it is infeasible to rely on RL
to learn constraints because the reward space is too sparse.

Confidential + Proprietary

Proprietary + Confidential

Telamon: A Constraint Solver

“Telamon is a wrapper around a constraint solver that encodes
combinatorial decision problems and exposes them to external search
heuristics.”

Pros: Telamon can work with external search strategies to find valid
placement under static constraints.

Confidential + Proprietary

Proprietary + Confidential

Telamon: A Constraint Solver

“Telamon is a wrapper around a constraint solver that encodes
combinatorial decision problems and exposes them to external search
heuristics.”

Cons:

(1) Need a closed-form formulation of the objective function for finding the
optimal.

(2) Does not learn any bias or policies from input data.
(3) Not every constraint can be statically formulated (e.g., memory

allocation).

Confidential + Proprietary

Proprietary + Confidential

GO + Telamon: A Constrained RL Approach

Policy NetworkGraphSAGE

Feed Forward Layers

In
pu

t G
ra

ph

N
od

e
E

m
be

dd
in

g
S

ta
te

E

m
be

dd
in

g

Nx128

NxS

P
ol

ic
y

O
ut

pu
t

NxD

Concat

Te
la

m
on

GO Framework

Va
lid

Pl

ac
em

en
t

Output[i, j]:
The probability
of a node i to
be placed on
the chip j

Confidential + Proprietary

Proprietary + Confidential

Inside a Telamon

● Maintains the range of valid values for every variable yi (the domain
of yi).

● Query the current domain of variables and set variable domains.
● Constraint propagation that recursively prunes the domain of other

variables when setting a variable.
● If detects an invalid assignment during constraint propagation,

backtrack to to a previous state, undoing previous decisions.

Confidential + Proprietary

Proprietary + Confidential

GO + Telamon: Two Modes

● Telamon + RL:
○ FIX mode / SAMPLE mode

FIX mode SAMPLE mode

Telamon Telamon

RL Model 0 2 1 2

0 0 1 2

RL Model 1/8 1/2 1/8 1/4

0 0 1 2

predicted config

a valid config a valid config

predicted prob
distribution

Confidential + Proprietary

Proprietary + Confidential

Pretraining and Generalization

Confidential + Proprietary

Proprietary + Confidential

Pretraining Setups

● Model Zoo: 87 ML graphs in total
○ Training dataset: 66 ML graphs
○ Validation dataset: 5 ML graphs
○ Test dataset: 16 ML graphs

● Environment:
○ An analytical model to estimate the latency of each chip
○ Tmax = max(T0, T1, …, TD-1) where D is the number of devices
○ Throughput = 1 / Tmax

● Reasons for using analytical model:
○ Fast: real hardware evaluation is expensive.
○ Strong correlation between analytical model and real hardware evaluation.

Confidential + Proprietary

Proprietary + Confidential

Throughput Improvement

● Average on 16 test graphs, over
compiler heuristics.
○ RL from scratch
○ RL finetuning
○ RL zeroshot
○ Random search
○ Simulated annealing

Confidential + Proprietary

Proprietary + Confidential

Real Hardware Evaluation on BERT

● Better throughput at convergence
○ RL (GO) outperforms Random and SA

by 6.11% and 5.86% respectively.
● RL fine-tuning yields best results
● Search time reduction

○ 20 samples (9 minutes) vs. 800 samples
(6 hours) to get on-par with training
from scratch

Confidential + Proprietary

Proprietary + Confidential

Analytical Model Regression

● Generate 2000 placement
configs randomly.

● Evaluate the placement configs
on both analytical model and real
hardware.

● Correlation score: 0.91

Confidential + Proprietary

Proprietary + Confidential

Generalization Results

● GO Fine-tuning works well:
○ Strong correlation (0.91)

● Pre-training on analytical model
○ Learns a bias on model balancedness

● Fine-tuning on real hardware
○ Learn additional dynamic constraints

(dynamic memory)

Confidential + Proprietary

Proprietary + Confidential

Generalization Results

● GO Fine-tuning works well:
○ Strong correlation (0.91)
○ Fine-tuning allows the model to

learn additional dynamic
constraints.

● GO Zeroshot does not work well:
○ Some false positives from the

analytical model
○ some runtime constraints can’t be

captured the analytical model
(13.5% failures).

Confidential + Proprietary

Proprietary + Confidential

Takeaways

● Transferable graph optimizer using deep RL
○ Non-autoregressive method that is fast and scalable to more

than 10k nodes.
○ Generalization across unseen graphs and transfer learning for

multiple tasks.
● Productionized in a multi-chip placement problem

○ Better throughput than production compilers.
○ Reduce search time from 6 hours to 9 minutes.

Confidential + Proprietary

Proprietary + Confidential

Existing Solutions in Compilers

● Heuristics (e.g. Greedy Algorithm)
○ Pros: Does not need to

evaluate generated
placement configs.

○ Cons: Achieve lower
performance (throughput)

Compilation Time

Pl
ac

em
en

t P
er

fo
rm

an
ce

Heuristics

Confidential + Proprietary

Proprietary + Confidential

Existing Solutions in Compilers

● Heuristics (e.g. Greedy Algorithm)
○ Pros: Does not need to

evaluate generated placement
configs.

○ Cons: Achieve lower
performance (throughput)

● Search-based Algorithms (e.g.
Simulated Annealing)
○ Pros: Achieve higher

performance (throughput)
○ Cons: Needs a number of

samples to discover a good
placement (~27 secs per
sample)

Compilation Time

Pl
ac

em
en

t P
er

fo
rm

an
ce

Heuristics

Search-based
Algorithms

Confidential + Proprietary

Proprietary + Confidential

Our Solutions in Compilers

● Better Performance:
○ Higher throughput for

discovered placement
config.

○ Improved Sample Efficiency:
● Transferable from training data

to unseen input graphs
● Ultra good performance with

fine-tuning.

Compilation Time

Pl
ac

em
en

t P
er

fo
rm

an
ce

Heuristics

Our Transferable
RL Approach

Search-based
Algorithms

Confidential + Proprietary

Proprietary + Confidential

Thank you & QA

