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Background
A compiler transforms a program into machine executable code. 

P 2

...
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Background
● General in face of explosion of models and frameworks.
● Targeting/Retargeting various hardware backends. 

High-level Representation 

Tensor Expression and Optimization Space

LLVM, CUDA, etc.

Figure credit: https://tvm.apache.org/2019/03/18/tvm-apache-announcement

graph rewriting, 
device placement, 
operation fusion, 
layout and tiling, 
scheduling, etc. 
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Background
Search-based Compilers
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Background
Search at sub-graph level can be sub-optimal!

P 6

A common strategy partitions a graph into subgraphs according 
to the neural net layers, ignoring cross-layer optimization 
opportunities.

Empirical result: a regression of up to 2.6x and 32% 
on average across 150 ML models by limiting fusions 
in XLA to be within layers.
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Background
Long Compilation Time
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Background
A XLA TPU Compiler

P 8

Algebraic simplification,
Dot conversion,

Layout assignment,
Cross-replicas sharding,

Operator fusion,
Rematerialization,

Operator scheduling

Graph-Level 
Optimizations

tensor 
computation 

graph
kernels / 

subgraphs

Loop tiling,
Loop ordering/unrolling, 

Heuristics 
parameters (flags), 

Overlapping 
data-transfer & compute,

2D register mapping

Kernel-Level 
Optimizations
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Today’s agenda 
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf
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A Learnt Performance Model for TPUs
Samuel Kaufman*, Mangpo Phothilimthana, Yanqi Zhou, 
Charith Mendis, Amit Sabne, Mike Burrows

*Internship work at Google
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XTAT: XLA TPU Autotuner

P 12

Code
Optimizer

ML 
program

Learned 
Policy

decision

observation

to guide 
the search

Learned Cost 
ModelHardware

candidate cost

Evaluator

Graph-level 
Optimizations:

Algebraic Simplification,
Layout Assignment, 

Cross-Replica Sharding, 
Operator Fusion, 

Rematerialization, etc.

Kernel-level 
Optimizations: 

Tiling, Vectorization, Flags, 
etc.

blue = optimizations that we tune
yellow = learned models

Phothilimthana et al.,“A Flexible Approach to Autotuning Multi-Pass Machine Learning Compilers”,  PACT 2021.
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ML 
program

Graph-level 
Optimizations:

Algebraic Simplification,
Layout Assignment, 

Cross-Replica Sharding, 
Operator Fusion, 

Rematerialization, etc.

Kernel-level 
Optimizations: 

Tiling, Vectorization, Flags, 
etc.

Learned 
Policy

decision

observation

to guide 
the search

Learned Cost Model

P 13

Code
Optimizer

Learned Cost 
ModelHardware

candidate cost

Evaluator

Kaufman and Phothilimthana et al., A Learned Performance Model for Tensor Processing Units, MLSys 2021.
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Learned Cost Model: Objective
● General enough to handle non-trivial constructs 

○ e.g. multi-level loop nests
● Generalize across programs of different application domains
● Should not rely on well-crafted features 
● Retargetable to different optimization tasks 
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Overview of Cost Model

15

f(     )
KERNEL

≅ 5.2s
RUNTIME

2. Regression Per Kernel 1. Decompose Into Kernels
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Benefits of Kernel-level Regression

1. Decompose Into Kernels

● General to various tasks
● More accurate at low-level 

representation



Confidential + Proprietary
P 17

Model Design: Model Inputs

GNN

embed 
opcode

opcode
ids

opcode 
embeddings

kernel feats

node feats

repeat

adjacency 
matrix

node 
embeddings

||

||

Reduction model: 
simple reduction, 

LSTM, or 
Transformer

feed
forward

kernel 
embeddings

runtime 
prediction● Node features

○ Opcode
○ Scalar features (e.g. output 

tensor shape, tensor layout, 
striding, padding, etc.)

● Whole-kernel features
○ Tile size
○ Static performance info

● Adjacency matrix
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Model Design: Adjacency Matrix

● An optimized tensor computation 
graph consists of multiple kernels.

● Each kernel contains a graph of 
nodes of primitive operations.
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Model Design: Node Embedding

GNN 

● Tensor compute kernel is 
represented as a graph.

● Learn node features 
conditioned on its neighbors.

● Isomorphism for 
generalization

● Choose GraphSAGE

Hamilton et al., GraphSAGE, 2017.
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Model Design: Node Embedding

Reduction model: 
simple reduction, 

LSTM, or 
Transformer

feed
forward

kernel 
embeddings

runtime 
prediction

● Reduce mean, reduce sum
● The final state of an LSTM
● Transformer Encoder
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Losses

Mean Squared Error
for absolute runtime prediction.
Targets are log-transformed.

1 if z > 0
0 otherwise

hinge function or
logistic function

Pairwise Rank Loss
for relative runtime prediction.
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Accuracy Evaluation and Baseline

● Accuracy evaluation tasks

○ Tile size selection (relative runtimes)

○ Fusion (absolute runtimes)

● Baseline: XLA’s hand-written, analytical performance model

○ XLA argmins all tile sizes using this performance model

○ Fusion does not use this model. It uses other heuristics.
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Accuracy: Tile Size Selection

Compare true runtimes between best 
predicted and actual best tile size. APE:

In random split, learned model ~halves APE.
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Accuracy: Fusion

Compare Mean Absolute Percentage 
Error of kernel runtime predictions.

Random split: learned model improves 
MAPE by ~85%.
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Ablations: takeaways

● Using a rank loss for the tile-size task reduced APE by 10 pts. on 
average.

● GraphSAGE outperformed using a sequence model or Graph 
Attention Networks and was less sensitive to hyperparameter 
selection.

● Replacing the LSTM/Transformer reduction with a non-learned 
reduction works almost as well (and improves inference time).

http://snap.stanford.edu/graphsage/
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1710.10903.pdf
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Training for All Optimization Tasks

● Generate  training  data  from 150 ML models using random 
layout, fusion, tile size, and flag configurations. 

● Train:
○ one model for  all  graph-level  optimizations to predict 

absolute runtime
○ one  model  for  tile-size  to predict relative runtime
○ one  model  for  flags  to predict relative runtime 

● The  graph embedding  network  is  shared  between  tile-size and 
flags models.
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Tuning with Learned Cost Model

Execute the top k configurations from each worker according to 
the model on real hardware and pick the best. 
● k = 10 for graph-level optimizations
● k = 5 for kernel-level optimizations

Runtime Speedup (x)

be
tte

r

be
tte

r

Tuning Time (min)
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Today’s agenda 
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf
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Transferable Graph Optimizers for ML Compilers

Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi*, Daniel Wong*, 
Peter Ma, Qiumin Xu, Hanxiao Liu, Mangpo Phothilimtha, Shen 
Wang, Anna Goldie, Azalia Mirhoseini, and James Laudon

*Internship work at Google
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What are we trying to address?
● Heuristics based compiler optimizations are suboptimal, treating 

each optimization task in isolation.

High-level Representation 

Tensor Expression and Optimization Space

LLVM, CUDA, etc.

Figure credit: https://tvm.apache.org/2019/03/18/tvm-apache-announcement

graph rewriting, 
device placement, 
operation fusion, 
layout and tiling, 
scheduling, etc. 
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What are we trying to address?
● Existing learning based methods are sample inefficient, tackle a 

single optimization problem, or do not generalize to unseen 
graphs. 
○ Hierarchical device placement 
○ Placeto
○ NeuRewriter
○ REGAL

● Generalization is important for deployment 

Azalia Mirhoseini and others.  A hierarchical model for device placement. ICLR, 2018.
Ravichandra Addanki and others. Placeto: Learning generalizable device placement algorithms for distributed machine learning. NeurIPS, 2019.
Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. Neurips, 2019.
Aditya Paliwal and others. REGAL: transfer learning for fast optimization of computation graphs. ICLR, 2020.
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GO: Transferable graph optimizers 
● Apply machine learning to learn a generalized approach for 

compiler graph optimizations
● Tasks

○ Automatic device placement
○ Operation fusion
○ Operation scheduling
○ ...

● Goals 
○ Minimize graph runtime by optimizing node attributes
○ Handle large graphs over 10k nodes
○ Generalization on unseen data
○ Transferable across tasks
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Device placement

𝜋: 𝒢→ⅅ that assigns a device D ∈ ⅅ for all nodes in the given graph G ∈ 𝒢 
to maximize a reward r(G, D).  

Device 0
Device 1
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Operation scheduling

a b a b a b

Schedule 1 Schedule 2

𝜋: 𝒢→ℙ that assigns a scheduling priority P ∈ ℙ for all nodes in the given 
graph G ∈ 𝒢 to maximize a reward r(G, P).  
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Operation fusion

𝜋: 𝒢→ℱ that assigns a fusion priority F ∈ ℱ  for all nodes in the given graph G 
∈ 𝒢 to maximize a reward r(G, F).  
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GO: Transferable graph optimizers 
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GO: Transferable graph optimizers 
● Generalization across graphs->GraphSAGE embedding layers



Confidential + Proprietary

GO: Transferable graph optimizers 
● Generalization across graphs->GraphSAGE embedding layers

○ Invariant to node order.
○ Generalize to unseen nodes, graphs.
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GO: Transferable graph optimizers 
● Long-range dependences->Segmented recurrent attention 
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GO: Transferable graph optimizers 
● Specialization for graph types->Input feature conditioning
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GO: Transferable graph optimizers 
● Multiple dependent tasks->Recurrent attention task heads
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GO: Transferable graph optimizers 
● Generalization across graphs

○ T∈{D, P, F}: task
○ θ: parameters of the RL policy
○ 𝒢: empirical distribution of the dataflow graphs.

● Joint optimization across tasks
○ Parameters across the three tasks can be partially shared.
○ The shared policies can be parameterized in the form of multiple 

recurrent attention layers.
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GO: Iterative but non-autoregressive node decisions

● Autoregressive
○ Ideally, compute the action distribution of the node under consideration 

based on the actions of all previous nodes:

○ Infeasible as N can be as large as 10K. 
● Iterative but non-autoregressive approximation:

○ N sampling procedures are carried out in parallel within each iteration t.
○ Decisions of N nodes are allowed to mutually influence each other.
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GO: Experiment Setup

● Workloads
○ RNNLM, GNMT, Transformer-XL, Inception-v3, AmoebaNet, WaveNet.
○ Varying architectural parameters (e.g. layers, hidden dim)

● Run time measurement
○ Real-hardware measurement for device placement
○ Industry-standard performance model for the rest tasks

● Baselines
○ Default heuristics in TF (GPU)
○ Human expert solution
○ Simulated annealing
○ Learning-based strategy like HDP



Confidential + Proprietary

GO: Speedup on device placement
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GO: Generalization on device placement

● Real-hardware measurement
● GO-finetune matches GO-one
● GO-zeroshot better than human placement and HDP
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GO: Multi-task speedup 

● 33%-60% speedup jointly optimizing three tasks, over TF default
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Today’s agenda 
● Supervised Learning

○ A Learnt Performance Model for TPUs, MLSys 2021
● Reinforcement Learning

○ GO: Transferable Graph Optimizers for ML Compilers, NeurIPS 2020
● Production

○ Partitioning ML Models on Multi-Chip Modules, MLSys 2022

https://proceedings.mlsys.org/paper/2021/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://papers.nips.cc/paper/2020/file/9f29450d2eb58feb555078bdefe28aa5-Paper.pdf
https://arxiv.org/pdf/2112.04041.pdf
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A Transferable Constrained RL for Partitioning ML 
Modules on Multi-Chip-Modules

xinfeng@ucsb.edu, sudipr@, mangpo@, prakashp@, 

ulysse@, azalia@, ebrevdo@, jlaudon@, yanqiz@
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Gyrfalcon: A Multi-Chip-Module Package for ML 
Acceleration
● Multi-Chip-Module

○ Combines smaller chiplets
○ Reduce cost and improve yields

● Our target hardware: Gyrfalcon
○ 6x6 Hermosa Chips
○ 432 TFLOPS / 864 TOPS
○ 1 GB SRAM; 290 W; 16 GB/s 

die-to-die 1D Ring
● Graph Partitioning is critical

○ Balanced 
○ Lower inter-chip 

communication

Hermosa x1 die Hermosa x36 ASIC

x1

x36

24 TOPS
32 MB SRAM

[source]

https://sites.google.com/corp/google.com/gyrfalcon/home
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Why a constrained solver?

● Placement Constraints
○ Acyclic dataflow
○ No skipping chips
○ Chip triangle dependency
○ Uncaptured dynamics

Hermosa x1 die Hermosa x36 ASIC

x1

x36

24 TOPS
32 MB SRAM

[source]

https://sites.google.com/corp/google.com/gyrfalcon/home
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Device Placement Constraints

● Acyclic dataflow constraint
○ Data only flows from lower 

chip ID to higher chip ID.
○ Reason: (hardware) 1D ring 

for inter-chip 
communication.
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ML graph An example of 4 chips

An invalid placement
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Device Placement Constraints

● No skipping chip constraint
○ Every chip should have at 

least one TF node assigned 
to it.

○ Reason: (software) virtual 
device groups are always 
contiguous.
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ML graph An example of 4 chips

An invalid placement
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Device Placement Constraints

● Chip triangle dependency constraint
○ A -> B -> C and A -> C are not 

allowed
○ Example: {Chip 0 -> Chip 1 -> Chip 

2} and {Chip 0 -> Chip 2}
○ Reason: (hardware) prevent 

inter-chip communication 
deadlocks.
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1

Chip 
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ML graph An example of 4 chips

An invalid placement
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Device Placement Constraints

● Static constraints:
○ Acyclic dataflow constraint
○ No skipping chip constraint
○ Chip dependency triangle 

constraint
● Dynamic constraints:

○ Memory allocation constraint 
(OOM)
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ML graph An example of 4 chips

An invalid placement
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Device Placement Constraints

● Static constraints:
○ Easy to mathematically formulate.
○ Constraint solvers can identify invalid placement statically

● Dynamic constraints:
○ Hard to formulate before compilation.
○ RL is able to learn through environment dynamics.

Our contribution: a transferable deep RL working with a constraint solver.
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GO Framework: An RL Approach

Pros: GO can generate placement actions in a non-autoregressive way.
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GO Framework: An RL Approach for Device 
Placement
Pros: GO can generate placement actions in a non-autoregressive way.

Cons: GO is not aware of placement constraints, and it is infeasible to rely on RL 
to learn constraints because the reward space is too sparse.
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Telamon: A Constraint Solver

“Telamon is a wrapper around a constraint solver that encodes 
combinatorial decision problems and exposes them to external search 
heuristics.”

Pros: Telamon can work with external search strategies to find valid 
placement under static constraints.
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Telamon: A Constraint Solver

“Telamon is a wrapper around a constraint solver that encodes 
combinatorial decision problems and exposes them to external search 
heuristics.”

Cons: 

(1) Need a closed-form formulation of the objective function for finding the 
optimal.

(2) Does not learn any bias or policies from input data.
(3) Not every constraint can be statically formulated (e.g., memory 

allocation).
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GO + Telamon: A Constrained RL Approach

Policy NetworkGraphSAGE
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Inside a Telamon

● Maintains the range of valid values for every variable yi (the domain 
of yi).

● Query the current domain of variables and set variable domains.
● Constraint propagation that recursively prunes the domain of other 

variables when setting a variable. 
● If detects an invalid assignment during constraint propagation, 

backtrack to to a previous state, undoing previous decisions. 
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GO + Telamon: Two Modes

● Telamon + RL:
○ FIX mode / SAMPLE mode

FIX mode SAMPLE mode

Telamon Telamon

RL Model 0 2 1 2

0 0 1 2

RL Model 1/8 1/2 1/8 1/4

0 0 1 2

predicted config

a valid config a valid config

predicted prob 
distribution
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Pretraining and Generalization
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Pretraining Setups

● Model Zoo: 87 ML graphs in total
○ Training dataset: 66 ML graphs
○ Validation dataset: 5 ML graphs
○ Test dataset: 16 ML graphs

● Environment:
○ An analytical model to estimate the latency of each chip
○ Tmax  = max(T0,  T1,  …,  TD-1) where D is the number of devices
○ Throughput = 1 / Tmax

● Reasons for using analytical model:
○ Fast: real hardware evaluation is expensive.
○ Strong correlation between analytical model and real hardware evaluation.
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Throughput Improvement

● Average on 16 test graphs, over 
compiler heuristics.
○ RL from scratch
○ RL finetuning
○ RL zeroshot 
○ Random search 
○ Simulated annealing
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Real Hardware Evaluation on BERT

● Better throughput at convergence
○ RL (GO) outperforms Random and SA 

by 6.11% and 5.86% respectively.
● RL fine-tuning yields best results
● Search time reduction

○ 20 samples (9 minutes) vs. 800 samples 
(6 hours) to get on-par with training 
from scratch
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Analytical Model Regression

● Generate 2000 placement 
configs randomly.

● Evaluate the placement configs 
on both analytical model and real 
hardware.

● Correlation score: 0.91
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Generalization Results

● GO Fine-tuning works well:
○ Strong correlation (0.91)

● Pre-training on analytical model 
○ Learns a bias on model balancedness

● Fine-tuning on real hardware
○ Learn additional dynamic constraints 

(dynamic memory)
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Generalization Results

● GO Fine-tuning works well:
○ Strong correlation (0.91)
○ Fine-tuning allows the model to 

learn additional dynamic 
constraints.

● GO Zeroshot does not work well:
○ Some false positives from the 

analytical model
○ some runtime constraints can’t be 

captured the analytical model 
(13.5% failures).
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Takeaways

● Transferable graph optimizer using deep RL
○ Non-autoregressive method that is fast and scalable to more 

than 10k nodes.
○ Generalization across unseen graphs and transfer learning for 

multiple tasks. 
● Productionized in a multi-chip placement problem

○ Better throughput than production compilers.
○ Reduce search time from 6 hours to 9 minutes.



Confidential + Proprietary

Proprietary + Confidential

Existing Solutions in Compilers

● Heuristics (e.g. Greedy Algorithm)
○ Pros: Does not need to 

evaluate generated 
placement configs.

○ Cons: Achieve lower 
performance (throughput)

Compilation Time
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Existing Solutions in Compilers

● Heuristics (e.g. Greedy Algorithm)
○ Pros: Does not need to 

evaluate generated placement 
configs.

○ Cons: Achieve lower 
performance (throughput)

● Search-based Algorithms (e.g. 
Simulated Annealing)
○ Pros: Achieve higher 

performance (throughput)
○ Cons: Needs a number of 

samples to discover a good 
placement (~27 secs per 
sample)
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Search-based 
Algorithms
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Our Solutions in Compilers

● Better Performance:
○ Higher throughput for 

discovered placement 
config.

○ Improved Sample Efficiency:
● Transferable from training data 

to unseen input graphs
● Ultra good performance with 

fine-tuning.
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Heuristics

Our Transferable 
RL Approach

Search-based 
Algorithms
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Thank you & QA


