
3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 1/9

Princeton University
COS 217: Introduction to Programming Systems

Assignment 5: Buffer Overrun

Purpose

The purpose of this assignment is to help you learn (1) how programs are represented in ARMv8 machine
language, (2) how ARMv8 stack frames are structured in memory, and (3) how ARMv8 programs can be
vulnerable to buffer overrun attacks.

As noted in the next section, this is a teams-of-two assignment.

Rules

You may work with one teammate on this assignment. You need not work with a teammate, but we prefer
that you do. Your preceptor will help you with your teammate search, if you so desire.

Your teammate must be from your precept. So make sure you find a teammate as soon as you can. After all, if
your precept has an odd number of students, then someone must work alone; don't let that person be you! Any
exceptions to this policy must be made by the lead instructor.

The "A+" attack (as defined below) is the challenge part of this assignment. While doing the challenge part of
the assignment, you are bound to observe the course policies regarding assignment conduct as given in the
course Policies web page, plus one additional policy: you may not use any "human" sources of information. That
is, you may not consult with the course's staff members, the lab teaching assistants, other current students via
Piazza, or any other people while working on the challenge part of an assignment, except for clarification of
requirements. However you may consult with your teammate, with no limitations.

As noted below, the challenge part is worth 10 percent of this assignment. So if you don't do the challenge part
and all other parts of your assignment solution are perfect and submitted on time, then your grade for the
assignment will be 90 percent.

Background

We will provide a "grader" program, both source code (grader.c) and executable binary code (grader). The file
grader was produced from grader.c using this command:

gcc217 -O -fomit-frame-pointer grader.c -o grader

In short, the -O and -fomit-frame-pointer options make sure that the grader program is vulnerable to buffer
overflow attacks. See the course instructors if you would like more information about those options.

The program asks you for your name, and writes something like this (where the user input and program output
are indicated by font style):

1

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 2/9

$./grader
What is your name?
Bob
D is your grade.
Thank you, Bob.

However, the author of the program inexplicably forgot to do bounds-checking on the array into which the
program reads the input, and so the program is vulnerable to a buffer overrun (alias buffer overflow) attack.

Your Task

Your task is to attack the given program by exploiting its buffer overrun vulnerability. More specifically, your
job is to provide input data to the program so that it writes something more like this:

$./grader < dataB
What is your name?
B is your grade.
Thank you, Bob.

As you can see from reading the program, it is designed to give the B grade if the user's name is Andrew Appel,
but not if the user's name is Bob. However, it is programmed sloppily: it reads the input into a buffer, but forgets
to check whether the input fits. This means that a too-long input can overwrite other important memory, and you
can trick the program into giving you a B even though your name is not Andrew Appel.

Here's another example

$./grader < dataA
What is your name?
A is your grade.
Thank you, Bob.

As you can see from reading the program, it is designed not to give anyone an A under any circumstances.
However, again, it is programmed sloppily. A too-long input can overwrite other important memory, and you can
trick the program into giving you an A.

In fact, because of the program's buffer overrun vulnerability, you even can trick the program into giving you an
A+:

$./grader < dataAplus
What is your name?
A+ is your grade.
Thank you, Bob.

The Procedure

Develop on armlab. Use emacs to create source code. Use gdb to debug.

The armlab /u/cos217/Assignment5 directory contains files that you will need. Subsequent parts of this
document describe them. Create a project directory, and copy all files from the /u/cos217/Assignment5 directory
to your project directory. Then complete the parts of the assignment given below, in the order of their
appearance.

Study the given Makefile. Using it could save you lots of typing.

2

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 3/9

The precept document entitled A Linux File Sharing Trick describes a mechanism that you can
use to share Assignment 5 files with your teammate.

Step 1: Legal Matters (2% of the grade)

Copy these sentences to your readme file, and fill in the blanks so the sentences are correct:

According to 18 U.S. Code 1030, if you were to use a buffer overrun attack to commit fraud or
related activity in connection with computers, but did not attempt to cause death and did not
knowingly or recklessly cause death, then you could receive a maximum penalty of _____ in prison.

According to 18 U.S. Code 1030, if you were to use a buffer overrun attack to commit fraud or
related activity in connection with computers, and attempted to cause death or knowingly or
recklessly caused death, then you could receive a maximum penalty of _____ in prison.

It's fine to do a web search to complete Step 1 of the assignment.

Step 2: The Memory Map (37% of the grade)

Create a text file named memorymap. Begin your memorymap file with your name and your teammate's name.

Take the grader executable binary file that we have provided you, and use gdb to analyze its sections.

Step 2.1: The Memory Map of the Text Section

Analyze the text section by issuing this x command:

$ gdb grader
(gdb) x/71i readString

Then copy the resulting 71 lines of assembly language code into your memorymap file. (Be careful: gdb displays
the lines one windowfull at a time, so you must press the <Enter> key to see all 71 lines.) Then annotate the
lines to explain them.

Do not annotate every line of assembly language code. Instead, cluster the lines of assembly language code into
"paragraphs," and annotate each paragraph. Your analysis must have this format:

Annotation
Line of assembly language code
Line of assembly language code
...
<blank line>
Annotation
Line of assembly language code
Line of assembly language code
...
<blank line>
...

Use these 7 annotations (and only these 7 annotations) in the readString function:

3

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 4/9

Prolog
First loop setup
First loop
buf[i] = '\0'
Second loop setup
Second loop
Epilog and return

Use these 4 annotations (and only these 4 annotations) in the getName function:

Prolog
printf("What is your name?\n");
readString();
Epilog and return

Use these 8 annotations (and only these 8 annotations) in the main function:

Prolog
mprotect(...);
getName();
if (strcmp(name, "Andrew Appel") != 0) skip assignment to grade
grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
Epilog and return 0

Step 2.2: The Memory Map of the Data Section

Analyze the data section by issuing these gdb commands:

$ gdb grader
(gdb) break main
(gdb) run
(gdb) print &grade
(gdb) x/x &grade

Place a table in your memorymap file showing the layout of the data section. The table must have three columns:
Address (in hex), Content (in hex), and Description. The table must contain one row for each byte in the data
section. Since the data section contains exactly one byte, the table must contain exactly one row.

Step 2.3: The Memory Map of the BSS Section

Analyze the bss section by issuing this gdb command:

$ gdb grader
(gdb) print &name

Place a table in your memorymap file showing the layout of the bss section. The table must have two columns:
Address (in hex) and Description. The table must contain one row for each byte in the bss section, that is, one
row for each byte of the name array.

At the start of program execution, the content of the name array will be zeros. Later during program execution,
the name array will contain more interesting data.

4

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 5/9

Compose your memory map of the bss section before you implement your "A" attack (as described below). The
table in your memory map must describe the content of the name array as you wish it to be during your "A"
attack. Thus your memory map of the bss section will help you to compose your "A" attack.

For your sake, it's fine to add another column to your memory map describing the content of the name array as
you wish it to be during your "A+" attack. Thus your memory map of the bss section will help you to compose
your "A+" attack. But you're not required to add that column.

Step 2.4: The Memory Map of the Stack Section

Using your analysis of the text section, compose an analysis of the stack section. Place a table in your memorymap
file showing the layout of the stack. The table must have two columns: Offset and Description. Each row must
represent 8 bytes. Each offset must be expressed as a positive offset relative to the SP register. The first row
must have offset 0, the second row must have offset 8, the third row must have offset 16, and so forth. The table
must show the content of the stack from the top value through the value of the X30 register that was pushed onto
the stack by the getName function.

You'll discover that the stack begins with the content of some registers; each row must have a description which
is the name of the register whose content is stored at that spot in the stack. Then the stack contains the buf array;
each row that comprises the buf array must have the description "buf". Finally the stack contains the content of
the X30 register that was stored by the getName function; that row must have the description "X30".

Step 3: The "B" Attack (12% of the grade)

Compose a C program named createdataB.c that produces a file named dataB, as short and simple as possible,
that causes the grader program to write your name and recommend a grade of "B". You can see by reading the
program that, if your name is Andrew Appel, that's very easy to do. But that's not easy to do if your name isn't
Andrew Appel! To receive full credit the dataB file must cause the grader program to generate output whose
format is indistinguishable from normal output.

The createdataB.c program must write to the dataB file; it must not write to stdout.

Your createdataB.c file must contain these comments:

A file comment, that is, a comment at the beginning of the file providing the file name, your name, and
your teammate's name.

A function comment describing the "I/O behavior" of the main function. That is, the function comment
must describe what the main function accepts as command-line arguments, reads from stdin or any other
stream, writes to stdout, stderr, or any other stream, and returns.

Local comments, that is, comments throughout your program that thoroughly describe the bytes that the
program writes to the dataB file.

It is acceptable to use "magic numbers" throughout your createdataB.c file.

For the "B" attack it's OK to truncate your name(s) if necessary.

5

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 6/9

Suggestion: After creating your dataB file, issue the command xxd dataB to confirm that the
file contains exactly the bytes that you want it to contain.

Step 4: A MiniAssembler Module (15% of the grade)

The given miniassembler.h interface file declares four functions that generate machine language instructions.
Comments in the file describe the functions. The given miniassembler.c implementation file defines one of
those functions. Define the other three, thus completing the miniassembler.c implementation file.

The given testminiassembler.c file tests the MiniAssembler module. Use the MiniAssembler module and
testminiassembler.c to build a program named miniassembler. Run the program, and compare its output to the
given testminiassembler.out file to make sure the function definitions in your MiniAssembler module are
correct.

Step 5: The "A" Attack (24% of the grade)

Compose a C program named createdataA.c that produces a file named dataA, as short and simple as possible,
that causes the grader program to write your name and recommend a grade of "A". To receive full credit the
dataA file must cause the grader program to generate output whose format is indistinguishable from normal
output. Your program must call the four functions that are declared in miniassembler.h.

The createdataA.c program must write to the dataA file; it must not write to stdout.

Your createdataA.c file must contain these comments:

A file comment, that is, a comment at the beginning of the file providing the file name, your name, and
your teammate's name.

A function comment describing the "I/O behavior" of the main function. That is, the function comment
must describe what the main function accepts as command-line arguments, reads from stdin or any other
stream, writes to stdout, stderr, or any other stream, and returns.

Local comments, that is, comments throughout your program that thoroughly describe the bytes that the
program writes to the dataA file.

It is acceptable to use "magic numbers" throughout your createdataA.c file.

For the "A" attack it's OK to truncate your name(s) if necessary.

Suggestion: After creating your dataA file, issue the command xxd dataA to confirm that the
file contains exactly the bytes that you want it to contain.

Step 6: The "A+" Attack (10% of the grade)

6

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 7/9

Compose a C program named createdataAplus.c that produces a file named dataAplus, as short and simple as
possible, that causes the grader program to write your name and recommend a grade of "A+". To receive credit
the dataAplus file must cause the grader program to generate output whose format is indistinguishable from
normal output.

The createdataAplus.c program must write to the dataAplus file; it must not write to stdout.

Your createdataAplus.c file must contain:

A file comment, that is, a comment at the beginning of the file providing the file name, your name, and
your teammate's name.

A function comment describing the "I/O behavior" of the main function. That is, the function comment
must describe what the main function accepts as command-line arguments, reads from stdin or any other
stream, writes to stdout, stderr, or any other stream, and returns.

Local comments, that is, comments throughout your program that thoroughly describe the bytes that the
program writes to the dataAplus file.

It is acceptable to use "magic numbers" throughout your createdataAplus.c file.

For the "A+" attack it's OK to truncate your name(s) if necessary.

For the "A+" attack it's OK to declare additional functions in the miniassembler.h file and
define additional functions in the miniassembler.c file.

Finishing Up

Edit your copy of the given readme file by answering each question that is expressed therein.

One of the sections of the readme file requires you to list the authorized sources of information that you used to
complete the assignment. Another section requires you to list the unauthorized sources of information that you
used to complete the assignment. Your grader will not grade your submission unless you have completed those
sections. To complete the "authorized sources" section of your readme file, copy the list of authorized sources
given in the Policies web page to that section, and edit it as appropriate.

Provide the instructors with your feedback on the assignment. To do that, issue this command:

FeedbackCOS217.py 5

and answer the questions that it asks. (When answering the numeric questions, please enter the average of the
responses that you and your teammate would provide individually.) That command stores its questions and your
answers in a file named feedback in your working directory.

Submit your work electronically on armlab. If you worked with a teammate, then one of the teammates must
submit all of your team's files, and the other teammate must submit none of your team's files. Your readme file,
your memorymap file, and your source code files must contain both your name and your teammate's name. Use
these commands to submit:

7

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 8/9

submit 5 createdataB.c
submit 5 miniassembler.h miniassembler.c
submit 5 createdataA.c
submit 5 createdataAplus.c
submit 5 memorymap readme feedback

Notes

On some versions of Linux, every time the program is executed the initial stack pointer is in a different place.
This makes it difficult to make an attack in which the return address points into the same data that was just read
into the buffer on the stack. (Indeed, that is the purpose of varying the initial stack pointer!) However, you will
note that the grader program copies data from buf (which is in the stack section) into name (which is in the bss
section). You'll find that name is reliably in the same place every time you (or we) run the grader program.

On some versions of Linux, executing instructions from the bss section causes a segmentation fault. The purpose
of this is to defend against buffer overrun attacks! The mprotect call in the grader program disables that
protection. You're not required to understand or explain how that line works. Note, however, that this mechanism
(even if we didn't disable it) would not defend against the "B" attack.

If you work hard, you could create input that exploits the buffer overrun to take over the grader's Linux process
and do all sorts of damage. DON'T DO THAT! Any deliberate attempt of that sort is a violation of the
University's disciplinary code, and also is a violation of the Computer Fraud and Abuse Act (see Step 1 above).

Program Style

In part, good program style is defined by the splint and critTer tools, and by the rules given in The Practice of
Programming (Kernighan and Pike) as summarized by the Rules of Programming Style document.

The more course-specific style rules listed in the previous assignment specifications also apply, as do the rules
given in previous sections of this assignment specification.

Grading

Minimal requirement to receive credit for creatdataB.c: the createdataB program must build.

Minimal requirement to receive credit for miniassembler.c: the testminiassembler program must build.

Minimal requirement to receive credit for createdataA.c: the createdataA program must build.

Minimal requirement to receive credit for createdataAplus.c: the createdataAplus program must build.

When we grade this assignment, we will take the recommendation of the grader program into account. But that
will not be the only criterion. In particular, see the grade percentages noted above.

To receive the full 10 percent credit for your "A+" attack, your "A+"attack must work perfectly. If it doesn't
work perfectly, then we will award up to 5 percent partial credit, but only if your createdataAplus.c program
contains a very thorough comment explaining the principles of operation of your attack.

We will grade your work on two kinds of quality:

8

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/style.pdf

3/27/2020 COS 217: Buffer Overrun Assignment

https://www.cs.princeton.edu/courses/archive/fall19/cos217/asgts/05overrun/ 9/9

Quality from the user's point of view. From the user's point of view, your code has quality if it
successfully implements the attacks described above.

Quality from the programmer's point of view. From the programmer's point of view, your code has quality
if it is well styled and thereby easy to maintain. Good program style is defined by the previous sections of
this assignment specification.

To encourage good coding practices, we will deduct points if gcc217 generates warning messages.

Debugging Tips

While debugging your attacks you might find it useful to use gdb to step through the execution of the grader
program at the machine language level. These commands are appropriate for doing that:

display/i $pc

gdb maintains a display list. You can issue the display command to place items on the display list.
Typically you place variables on the display list. At each pause in execution, gdb displays the values of all
those variables. Thus the display list is a handy way to track the values of variables throughout the
execution of your program.

That particular display command tells gdb to place the pc (program counter) register on the display list.
Thus at each pause in execution gdb displays the content of the memory to which pc points. That is, at
each pause in execution gdb displays the instruction that is about to be executed.

Moreover, that particular display command tells gdb to use the i (instruction) format when displaying.
Thus at each pause in execution gdb interprets the content of the memory to which pc points as a machine
language instruction, and displays that instruction in assembly language.

In short, that command tells gdb to display the instruction that is about to be executed.

stepi

As you know, in gdb the step command (abbreviated s) executes the next line of C code. Since the grader
executable binary file was built without the -g option, gdb has no knowledge of how the machine language
instructions of the grader executable binary file correspond to lines of C code. So the step command is
useless when analyzing the grader executable binary file.

Instead you can use the lower-level stepi command. The stepi command (abbreviated si) tells gdb to
execute the next machine language instruction.

This assignment was written by Andrew Appel and Robert M. Dondero, Jr.

9

grader.c (Page 1 of 1)
1: #include <stdio.h>
2: #include <string.h>
3: #include <stdlib.h>
4: #include <sys/mman.h>
5:
6: enum {BUFSIZE = 48};
7:
8: char grade = ’D’;
9: char name[BUFSIZE];
10:
11: void readString(void)
12: {
13: char buf[BUFSIZE];
14: int i = 0;
15: int c;
16:
17: for (;;)
18: {
19: c = fgetc(stdin);
20: if ((c == EOF) || (c == ’\n’))
21: break;
22: buf[i] = c;
23: i++;
24: }
25: buf[i] = ’\0’;
26:
27: for (i = 0; i < BUFSIZE; i++)
28: name[i] = buf[i];
29: }
30:
31: void getName(void)
32: {
33: printf("What is your name?\n");
34: readString();
35: }
36:
37: int main(void)
38: {
39: mprotect((void*)((unsigned long)name & 0xfffffffffffff000), 1,
40: PROT_READ | PROT_WRITE | PROT_EXEC);
41:
42: getName();
43:
44: if (strcmp(name, "Andrew Appel") == 0)
45: grade = ’B’;
46:
47: printf("%c is your grade.\n", grade);
48: printf("Thank you, %s.\n", name);
49:
50: return 0;
51: }

10

Princeton University

COS 217: Introduction to Programming Systems

Writing Binary Data

Example 1

We wish to five 0 bytes (alias null characters, alias '\0' characters) to a file named data. That is, we wish

to write these five bytes to the file:

00000000 00000000 00000000 00000000 00000000

Open the File

FILE *psFile;

psFile = fopen("data", "w");

Attempt 1 (Incorrect)

fprintf(psFile, "00000"); /* Writes 00110000 00110000 00110000 00110000 00110000 */

Attempt 2 (Incorrect)

for (i = 0; i < 5; i++)

 fprintf(psFile, "%c", '0'); /* Writes 00110000*/

Attempt 3 (Incorrect)

for (i = 0; i < 5; i++)

 putc('0', psFile); /* Writes 00110000 */

Attempt 4 (Correct)

for (i = 0; i < 5; i++)

 fprintf(psFile, "%c", '\0'); /* Writes 00000000*/

Attempt 5 (Correct)

for (i = 0; i < 5; i++)

 fprintf(psFile, "%c", 0); /* Writes 00000000*/

Attempt 6 (Correct)

for (i = 0; i < 5; i++)

 fprintf(psFile, "%c", 0x00); /* Writes 00000000 */

Attempt 7 (Correct)

for (i = 0; i < 5; i++)

 putc('\0', psFile); /* Writes 00000000 */

Attempt 8 (Correct)

for (i = 0; i < 5; i++)

 putc(0, psFile); /* Writes 00000000 */

Attempt 9 (Correct)

for (i = 0; i < 5; i++)

 putc(0x00, psFile); /* Writes 00000000 */

Close the File

fclose(psFile);

Page 1 of 3

11

Example 2

We wish to write the unsigned long 0x0123456789abcdef to a file named data as it would appear in

memory as an eight-byte entity. As humans, we would express the unsigned long

0x0123456789abcdef in binary like this:

00000001 00100011 01000101 01100111 10001001 10101011 11001101 11101111

most sig least sig

byte byte

But ARMv8 is a little-endian architecture. In the memory of a little-endian computer, the least significant

byte of an integer is in the lowest memory location. So the unsigned long 0x0123456789abcdef

appears in memory like this:

11101111 11001101 10101011 10001001 01100111 01000101 00100011 00000001

least sig most sig

byte byte

Or, more precisely, like this:

pretend

address

1000 11101111 least sig byte

1001 11001101

1002 10101011

1003 10001001

1004 01100111

1005 01000101

1006 00100011

1007 00000001 most sig byte

Open the File

FILE *psFile;

psFile = fopen("data", "w");

Attempt 1 (Incorrect)

fprintf(psFile, "0123456789abcdef");

/* Writes 00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111

 00111000 00111001 01100001 01100010 01100011 01100100 01100101 01100110 */

Attempt 2 (Incorrect)

fprintf(psFile, "%x", 0x0123456789abcdef);

/* Writes 00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111

 00111000 00111001 01100001 01100010 01100011 01100100 01100101 01100110 */

Attempt 3 (Correct)

fprintf(psFile, "%c", 0xef); /* Writes 11101111 */

fprintf(psFile, "%c", 0xcd); /* Writes 11001101 */

fprintf(psFile, "%c", 0xab); /* Writes 10101011 */

fprintf(psFile, "%c", 0x89); /* Writes 10001001 */

fprintf(psFile, "%c", 0x67); /* Writes 01100111 */

fprintf(psFile, "%c", 0x45); /* Writes 01000101 */

fprintf(psFile, "%c", 0x23); /* Writes 00100011 */

fprintf(psFile, "%c", 0x01); /* Writes 00000001 */

Attempt 4 (Correct)

putc(0xef, psFile); /* Writes 11101111 */

putc(0xcd, psFile); /* Writes 11001101 */

putc(0xab, psFile); /* Writes 10101011 */

putc(0x89, psFile); /* Writes 10001001 */

putc(0x67, psFile); /* Writes 01100111 */

putc(0x45, psFile); /* Writes 01000101 */

putc(0x23, psFile); /* Writes 00100011 */

putc(0x01, psFile); /* Writes 00000001 */

Attempt 5 (Correct) <--- the easiest approach

unsigned long ulData;

...

Page 2 of 3

12

ulData = 0x0123456789abcdef;

fwrite(&ulData, sizeof(unsigned long), 1, psFile);

/* Writes 11101111 11001101 10101011 10001001 01100111 01000101 00100011 00000001 */

Close the File

fclose(psFile);

Example 3

We wish to write the unsigned int 0x01234567 to a file named data as it would appear in memory as a

four-byte entity. As humans, we would express the unsigned int 0x01234567 in binary like this:

00000001 00100011 01000101 01100111

most sig least sig

byte byte

But ARMv8 is a little-endian architecture. In the memory of a little-endian computer, the least significant

byte of an integer is in the lowest memory location. So the unsigned int 0x01234567 appears in memory

like this:

01100111 01000101 00100011 00000001

least sig most sig

byte byte

Or, more precisely, like this:

pretend

address

1000 01100111 least sig byte

1001 01000101

1002 00100011

1003 00000001 most sig byte

Open the File

FILE *psFile;

psFile = fopen("data", "w");

Attempt 1 (Incorrect)

fprintf(psFile, "01234567");

/* Writes 00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111 */

Attempt 2 (Incorrect)

fprintf(psFile, "%x", 0x01234567);

/* Writes 00110000 00110001 00110010 00110011 00110100 00110101 00110110 00110111 */

Attempt 3 (Correct)

fprintf(psFile, "%c", 0x67); /* Writes 01100111 */

fprintf(psFile, "%c", 0x45); /* Writes 01000101 */

fprintf(psFile, "%c", 0x23); /* Writes 00100011 */

fprintf(psFile, "%c", 0x01); /* Writes 00000001 */

Attempt 4 (Correct)

putc(0x67, psFile); /* Writes 01100111 */

putc(0x45, psFile); /* Writes 01000101 */

putc(0x23, psFile); /* Writes 00100011 */

putc(0x01, psFile); /* Writes 00000001 */

Attempt 5 (Correct) <--- the easiest approach

unsigned int uiData;

...

uiData = 0x01234567;

fwrite(&uiData, sizeof(unsigned int), 1, psFile);

/* Writes 01100111 01000101 00100011 00000001 */

Close the File

fclose(psFile);

Copyright © 2019 by Robert M. Dondero, Jr.

Page 3 of 3

13

