

COS 226–Algorithms and Data Structures

Week 11: KMP & RE-NFAs (Algs. §5.3,5.4)

Version: April 18, 2018

Exercise 1 – Substring search

A. Construct the Knuth-Morris-Pratt DFA for the string PAPAYA over the alphabet $\{A,P,Y\}$. Complete the transition diagram and the corresponding DFA table. State 6 is the accept state.

	0	1	2	3	4	5
A						
Р						
Y						

B. Suppose that you run the Boyer-Moore algorithm (the basic version considered in the textbook and lecture) to search for the pattern,

DNAA

in the text

X N A A A D N A A

Give the trace of the algorithm in the grid below, circling the characters in the pattern that get compared with characters in the text.

X N A A A D N A A

Exercise 2 – Regular expressions and Non-Deterministic Finite Automata (REs and NFAs)

A. Consider the NFA given below. The bold lines are the match transitions (the dotted lines are ϵ transitions). Convert and write the corresponding regular expression.

B. Determine which of the strings given in (i) and (ii) below are accepted or rejected by the NFA above. For a string that is accepted show how the machine transitions get to the accept state. When a string is not accepted, show that machine transitions never get to the accept state. To start, you can take epsilon transitions and can be in multiple states before character A is scanned.

(i)	ABC
(1)	nuc

char	states		
Ø			
A			
В			
с			

String accepted by NFA? Yes / No

char	states
Ø	
A	
в	
С	
В	

String accepted by NFA? Yes / No