1. Initialization.

Don't forget to do this.

2. Memory.

$\sim 48 n$ bytes
Each Node object requires 48 bytes: object overhead (16 bytes), 3 references (24 bytes), char (2 bytes), int (4 bytes), padding (2 bytes).

3. Running time.

E D D D D E

4. String sorts.

A Original input
C MSD radix sort after the second call to key-indexed counting
D 3-way radix quicksort after the first partitioning step
C MSD radix sort after the first call to key-indexed counting
B LSD radix sort after 1 pass
D 3-way radix quicksort after the second partitioning step
E Sorted

5. Depth-first search.

(a) 0217684539
(b) 1687293540
(c) Explanation 1: There cannot be a topological order because of the directed cycle $5 \rightarrow 3 \rightarrow 9 \rightarrow 5$.
Explanation 2: The reverse of the postorder from (b) is not a topological order because 9 appears before 3 in the reverse postorder and $3 \rightarrow 9$ is an edge.
6. Breadth-first search.

0485923176
7. Maximum flow.
(a) $50=9+3+38$
(b) $78=29+12+37$
(c) 5
(d) $A \rightarrow B \rightarrow C \rightarrow H \rightarrow I \rightarrow D \rightarrow J$
(e) The unique mincut is $\{A, B, C, F, G\}$.
8. LZW compression.
(a) C A A C A B C A B A
(b)

i	codeword
81	CA
82	AA
83	AC
84	CAB
85	BC
86	CABA

9. Ternary search tries.

TIGER, TO, TOO, TRIE
10. Knuth-Morris-Pratt substring search.

	0	1	2	3	4	5	6	7
A	0	0	3	0	0	6	0	0
B	0	0	0	0	0	0	0	8
C	1	2	2	4	5	2	7	5
s	C	C	A	C	C	A	C	B

11. Programming assignments.

(a)

- There is exactly one vertex of outdegree 0 .
$\square \quad$ There is exactly one vertex of indegree 0 .
\square There are no directed cycles.
\square
There is a directed path between every pair of vertices.
\square
There are $V-1$ edges, where V is the number of vertices.
There are $E-1$ vertices, where E is the number of edges.
(b) $W H$
(c)
\square A achieves a better compression ratio than B.
\square C achieves a better compression ratio than A . E achieves a better compression ratio than A.D achieves the best compression ratio among A-E.
(d) Percolation, WordNet, SeamCarving

12. Properties of minimum spanning trees.

A C C A C
13. Properties of shortest paths.

B C A D C

14. Regular expressions.

(a) $\left(\mathrm{A}^{*} \mid\left(\mathrm{AB}^{*} \mathrm{~A}\right)+\right)$
(b) 1236781112

15. Shortest discount path.

Use the graph-doubling trick (ala Shortest-Princeton-Path from the Spring 2015 Final) and create a digraph G^{\prime} with $2 V$ vertices and $3 E$ edges as follows:

- For each vertex v in G : create two vertices v and v^{\prime}.
- For each edge $v \rightarrow w$ in G: create the three edges $v \rightarrow w, v^{\prime} \rightarrow w^{\prime}$, and $v \rightarrow w^{\prime}$. The weight of $v \rightarrow w$ and $v^{\prime} \rightarrow w^{\prime}$ equals the weight of e; the weight of $v \rightarrow w^{\prime}$ is one-half that weight.

A shortest path from s to t^{\prime} corresponds to a shortest discount path: the one edge in the path going from the first copy of the digraph to the second copy corresponds to the discounted edge.

16. Substring of a circular string.

Let u denote the string containing the first $m+n$ characters of the (infinite) circular string t. Do a substring search of the query string s in the text string u. If we use Knuth-Morris-Pratt, the overall running time will be proportional to $m+n$ in the worst case (m to build the DFA and $m+n$ to simulate it on string u).

Here are two examples, one with $m<n$ and one with $m>n$:

- $s=\mathrm{ABBA}, t=\mathrm{BABBBBBABBBBBAB}, m=4, n=15$. Search for the query string $s=$ ABBA in the text string $u=$ BABBBBBABBBBBABBABB.
- $s=\operatorname{BBAABBAABBAABB}, t=\mathrm{ABBA}, m=14, n=4$. Search for the query string $s=$ BBAABBAABBAABB in the text string $u=$ ABBAABBAABBAABBAA.

Note 1: Two copies of t is not enough when $m \gg n ;\lceil m / n\rceil$ copies of t is not enough when $m<n$.

Note 2: It simplest to form the string u explicitly, but you can also run Knuth-Morris-Pratt on u implicitly by building the DFA for s and simulating it on t, wrapping around to the beginning of t after you reach the end of t. In this case, you need to be careful about when to stop the simulation if no match is found: $m+n$ DFA transitions suffice.

