Precept 7
Raytracer

Huiwen Chang + Mar 13 2016



Ray Intersection
* Triangle

* Sphere

* Cylinder

 Cone

Textures

 Checker Board
* Special

Shadow
Animation



Ray Intersection - Triangle

Plane:
N - x = Dist
Triangle:

* Algebraic
e Geometric

For the normal on triangle at intersection:
no requirement for pointing inside or outside

mesh.json




Ray Intersection - Triangle

Plane:
N - x = Dist
Triangle:

* Algebraic
e Geometric

For the normal on triangle at intersection:
no requirement for pointing inside or outside

mesh.json




Ray Intersection - Triangle

Geometric

N = normalize( (T, = T,) x (T5-T,) )

P..

a = Area(T,T,P) / Area(T,T,T,)

B = Area(T,PT;) / Area(T,T,T,)

Area(T,T,T5) =% | |(T,=T) x (T5—T,) ||
=% <(T,—T) x(T;—T,), N>

Area(T,T,P) =% < (T,~T,)x(P—-T,), N>

Area(T,PT;) =% < (P—-T;) x(T5—T,), N>




Ray Intersection — Sphere

Look out reflecting/refracting ray!

P=PF +tV
tl =tca_thc v
or

t2 = tca +thc X



Ray Intersection — Sphere

If we always choose the “nearest” one:

P=PF +tV

tl = tca _ thc ‘/
or
ZL2 = tca + thc X

When a reflective/refractive ray
bounds at an intersection, t1 =0



Ray Intersection — Sphere

Check the “nearest valid(positive)” intersection
tl = tca o ZLhc
ZL2 = tca + thc

If (t1 > 0) return t1;
elseif (t2 > 0) return t2;
return INFINITY:




Ray Intersection — Sphere

Check the “nearest valid(positive)” intersection

Same for other primitives



Ray Intersection —Cylinder

1. Intersect with open cylinder
& Check if the intersection is between the planes

2. Intersect with two caps

3. Out of all intersections, choose the one with

minimal dist



Ray Intersection — Infinite Cylinder

1999, Denis Zorin

Infinite cylinder along y of

radius r axis has equation
x2+22-r2= 0.

The equation for a more general
cylinder of radius r oriented along
aline p, + v.,t:

(q “Pa- (Va!q - pa)va)2 -r2=0
where q = (x,y,z) is a point on the
cylinder.



Ray Intersection — Infinite Cylinder

1999, Denis Zorin

Infinite cylinder along y of

radius r axis has equation
x2+22-r2= 0.

The equation for a more general
cylinder of radius r oriented along
aline p, + v.,t:

(q " Pj - (Va!q - pa)va)2 -r2=0
where g = (Xx,y,z) is a point on the
cylinder.




Ray Intersection — Infinite Cylinder

To find intersection points with a ray p + vt,
substitute g = p + vt and solve:

(p -p,t vt - (va!p -p, ¥ Vt)va)2 -r2=0
reducesto At’+Bt+C=0
with
A = (V - (V,Va )va )2
B=2(v—(v,v,)v,,Ap—(Ap,V,)V,)

C= (Ap — (Ap’ Va )Va )2 o r2
where Ap = p-p,

1999, Denis Zorin



Ray Intersection — Cylinder

POV -ray like cylinder with caps : cap centers at p,
and p,, radius r.

Infinite cylinder equation: p_ = p,, v, = (P2~ P1)/| P2~ P4l

The finite cylinder (without caps) is described by
equations:

(4 - Pa - (Vard - P,)V,)? -r2 =0 and (v, g- p4) > 0 and
(Vay d-pp) <0
The equations for caps are:
(Vo 9- Py) =0, (9- p4)*<r? bottom cap
(Vo - P,) =0, (- p)2<r? top cap




Ray Intersection — Cone

Similar to cylinder:
1. Intersect with open cone

& Check if the intersection is between the planes

2. Intersect with the cap

3. Out of all intersections, choose the one with

minimal dist



Ray Intersection — Infinite Cone

I

4

Pa

Pa

Infinite cone along y with apex
half-angle o has equation

X2+ 2z2-y2=.

The equation for a more general
cone oriented along a line p, + v_t,
with apex at p_:

cos? (q - Pa - (Vasq - pa)va)2 B
sin?o (va,q - pa) 2=0

where g = (x,y,z) is a point on the
cone, and v, is assumed to be of
unit length.



Ray Intersection — Infinite Cone

Similar to the case of the cylinder: substitute q =
p+vt into the equation, find the coefficients A, B,
C of the quadratic equation, solve for t. Denote

Ap = p-p,. .
cos?qa (vt + Ap - (v,, vt + Ap )v,)? - W
sina. (v, vt+Ap)2=0 Pa
A =cos’o(v—(v,v,)v,) —sin’a(v,v,)’ ‘

B =2cos’a(v—(v,v,)v,,Ap—(Ap,V,)V,)—2sin’ a(v,Vv,)(Ap,V,)

C =cos’ a(Ap —(Ap,V, )V, )2 —sin’ a(Ap,Vv,)’



Ray Intersection — Infinite Cone

I:)arex

In the assignment,
N

is = hormalize(axis);

To get the normal in the infinite cone:
E=P-P

apex

Normal = normalize(E - ||E||/COS a * N

axis);

axis




Refraction
From a medium with a higher refractive index to a lower one

Total internal
reflection

Critical angle

N

0, 6,




Refraction

When >critical angle, Or you could return internal reflection;
you could let refraction return black;

In this scene, the “refraction ratio” of the sphere =1.1



Texture

 Checkerboard
— 2D: floor(x)+floor(y) is odd/even

— 3D: view normal as the z-axis for the new
coordinate, then find x, y



Texture

Special: Perlin noise

Using noise as an offset to create handwritten lines.

y Vo |

By applying a simple gradient, a procedural fire texture can be created.

rhaps the quintessential use of Perlin noise today, terrain can be created with cave



Perlin Noise

Random Perlin

m




ldea

Generate random
values at grid points.

8 1 2 3 4 5 6 7 8 918 11 1213 14

Interpolate smoothly
between these
values. T I I I I I T I I nLEEn




Step 1 Cut to grids

Step 2 Pseudorandom gradient vector.

Perlin Noise

(x0, y1) (x1, y1)
L |
| )
(x0, y0) {x1, y0)

a({x1,y1)

M

c.lli:<1,vDIl\

Code for Random

[NEW] Randomly pick from

(1,1,0),(-1,1,0),(1,-1,0),(-1,-1,0),
(1,0,1),(-1,0,1),(1,0,-1),(-1,0,-1),
(0,1,1),(0,-1,1),(0,1,-1),(0,-1,-1)



Perlin Noise

Step 3 Distance vectors
(e y)-(x0,y 1), 7 0x,y) -(x1,v1)

(x w)-0x0,v0)/ SO w)-Txl, vw0)
LA I B A ¥ 'JJ'.-._-' NAMII S AN

Step 4 Dot product on each grid point <Vgrad, Vdist>

Step 5 Interpolation

fade function: 6t>-15t*+10¢3




Hard Shadow

lightVec is the vector from that position to that light
Step 1 generate a ray from position to light
Step 2 find intersection length(distance)

Step 3 if distance is positive and before hitting the light
(smaller than the length of lightVec) return true;



Hard Shadow

C0S426 Assignment 3a
Rendering - RayTracer

Student Name <NetID>




Soft Shadow

C0S426 Assignment 3a
Rendering - RayTracer

Student Name <NetID>




Soft Shadow

Shoot rays around the point light - grid

* Uniformly sample * Randomly sample




Soft Shadow

Shoot rays around the point light - sphere
« Sample by 6 [0, 2mr) and ¢ [0, 1) Sample by solid angle

top view side view fop view side view

A AR
TRET BRGAE
o
P e
G AN TR
"Wy XSRLAE S

SRR -




Soft Shadow

float pointShadowRatio ( vec3 pos, vec3 lightVec ) {
float count = 0.0;

for i = 1...k
for j = 1...k
Randomly Sample a new light ray around the original light

if not pointInShadow(pos, newlLightVec)
count += 1.0;

return count/float(k*k);

}

In function getLightContribution
Comment if pointInshadow return black;

Modify return to contribution * pointShadowRatio (or diffuseColor
pointShadowRatio)



Soft Shadow

Randomly Sample:

_ PN IE)
%y 2= 2y 1-2-2

2

2 )
2x3 1 =xi =x3

1 -2 If‘l: +x3 )
) random x1, x2 in [-1, 1]

or ( R

X =,/ -

Y=y 1=u" cosé
=y 2 .
Y=y 1=u" sinf
=u

>
-~

)randomuin[-1, 1], 9 in [0, 2m)



Animation

In intersection with sphere,




