
Ray Casting

COS 426, Spring 2016
Princeton University

Ray Casting

•  The color of each pixel on the view plane  
depends on the radiance emanating along rays
from visible surfaces in scene

Camera

Light
Surfaces

Scene
•  Scene has:
!  Scene graph with surface primitives
!  Set of lights
!  Camera

Camera

Light
Surfaces

struct R3Scene {
 R3Node *root;
 vector<R3Light *> lights;
 R3Camera camera;
 R3Box bbox;
 R3Rgb background;
 R3Rgb ambient;

};

Scene Graph
•  Scene graph is hierarchy of nodes, each with:
!  Bounding box (in node’s coordinate system)
!  Transformation (4x4 matrix)
!  Shape (mesh, sphere, … or null)
!  Material (more on this later)

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

•  Simple scene graph implementation:

Scene Graph

struct R3Node {
 struct R3Node *parent;
 vector<struct R3Node *> children;
 R3Shape *shape;
 R3Matrix transformation;
 R3Material *material;
 R3Box bbox;

};

struct R3Shape {
 R3ShapeType type;
 R3Box *box;
 R3Sphere *sphere;
 R3Cylinder *cylinder;
 R3Cone *cone;
 R3Mesh *mesh;

};

Ray Casting
•  For each sample (pixel) …
!  Construct ray from eye position through view plane
!  Compute radiance leaving first point of intersection  

between ray and scene

Camera

Light
Surfaces

Ray Casting
•  Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Ray Casting
•  Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel
•  2D Example

d
Θ towards P0

right

right = towards × up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards – d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P1

P2

2*d*tan(Θ
)

P

P = P1 + ((i + 0.5) / width) * (P2 - P1)
V = (P - P0) / ||P - P0 ||
(d cancels out…)

V

Ray: P = P0 + tV

Ray Casting
•  Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Ray Casting
•  Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {
 bool hit;
 R3Node *node;
 R3Point position;
 R3Vector normal;
 double t;

};
Camera

Light
Surfaces

Ray Casting
•  Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {
 bool hit;
 R3Node *node;
 R3Point position;
 R3Vector normal;
 double t;

};
Camera

Light
Surfaces

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray Intersection
•  Ray Intersection

Ø Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray-Sphere Intersection

P0

V

O

P

r

P’

Ray-Sphere Intersection
Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I
Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = V2

b = 2 V • (P0 - O)
c = |P0 - C|2 - r 2 = 0

P0

V

O

P
r

P’

Algebraic Method

P = P0 + tV

Ray-Sphere Intersection II
Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0

V
O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O
P r

N = (P - O) / ||P - O||

N

•  Need normal vector at intersection  
for lighting calculations

Ray Intersection
•  Ray Intersection
!  Sphere
Ø Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray-Triangle Intersection

P

P0

V

Ray-Triangle Intersection
•  First, intersect ray with plane
•  Then, check if intersection point is inside triangle

P

P0

V

Ray-Plane Intersection
Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution:
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

Ray-Triangle Intersection I
•  Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 – P0
V2 = T2 – P0
N1 = V2 x V1
Normalize N1
Plane p(P0, N1)
if (SignedDistance(p, P) < 0)

return FALSE
end
return TRUE

Ray-Triangle Intersection II
•  Check if point is inside triangle algebraically

P
T1

T2

T3

V2
V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
if (V • N1 < 0)

return FALSE
end
return TRUE

N1

P0

V

Ray-Triangle Intersection II
•  Check if point is inside triangle algebraically

P

T1

T2

T3

V2
V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
if (V • N1 < 0)

return FALSE
end
return TRUE

N1
P0

V

Ray-Triangle Intersection III
•  Check if point is inside triangle parametrically

P

P0

“Barycentric coordinates” α, β, γ:
P = αT3 + βT2 + γT1

where α + β + γ = 1

α = Area(T1T2P) / Area(T1T2T3)
β = Area(T1PT3) / Area(T1T2T3)
γ = Area(PT2T3) / Area(T1T2T3)
 = 1 – α – β

V

α

β

T1

T2

T3

1-α-β

Ray-Triangle Intersection III
•  Check if point is inside triangle parametrically

P

P0

Compute “barycentric coordinates” α, β:
α = Area(T1T2P) / Area(T1T2T3)
β = Area(T1PT3) / Area(T1T2T3)

Area(T1T2T3) = ½ || (T2-T1) x (T3-T1) ||
check if backfacing: 
((T2-T1) × (T3-T1)) · N < 0

Check if point inside triangle.
0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
and α + β ≤ 1

V

α

β

T1

T2

T3

1-α-β

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
Ø Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray-Box Intersection
•  Check front-facing sides for intersection with ray

and return closest intersection (least t)

P0

P

(x2,y2)

V

(x1,y1)

Ray-Box Intersection
•  Check front-facing sides for intersection with ray

and return closest intersection (least t)
!  Find intersection with plane
!  Check if point is inside rectangle

P0

P

V

(x1,y1)

(x2,y2)

(0,-1)

Ray-Box Intersection
•  Check front-facing sides for intersection with ray

and return closest intersection (least t)
!  Find intersection with plane
!  Check if point is inside rectangle

P0

V

P(x1,y1)

(x2,y2)

(0,-1)

Other Ray-Primitive Intersections
•  Cone, cylinder:
!  Similar to sphere
!  Must also check end caps

•  Convex polygon
!  Same as triangle (check point-in-polygon algebraically)
!  Or, decompose into triangles, and check all of them

•  Mesh
!  Compute intersection for all polygons
!  Return closest intersection (least t)

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
Ø Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray-Scene Intersection
•  Intuitive method
!  Compute intersection for all nodes of scene graph
!  Return closest intersection (least t)

Camera

Light
Surfaces

Ray-Scene Intersection
•  Scene graph is a DAG
!  Traverse with recursion

Camera

Light
Surfaces

Sphere

Box Cylinder

Ray-Scene Intersection I
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

 // Check for intersection with shape
 shape_intersection = Intersect node’s shape with ray
 if (shape_intersection is a hit) closest_intersection = shape_intersection
 else closest_intersection = infinitely far miss

 // Check for intersection with children nodes
 for each child node
 // Check for intersection with child contents
 child_intersection = ComputeIntersection(scene, child, ray);
 if (child_intersection is a hit and is closer than closest_intersection)
 closest_intersection = child_intersection;

 // Return closest intersection in tree rooted at this node
 return closest_intersection

}

Ray-Scene Intersection
•  Scene graph can have transformations

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection
•  Scene graph node can have transformations
!  Transform ray (not primitives) by inverse of M
!  Intersect in coordinate system of node
!  Transform intersection by M Base

[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection II
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

 // Transform ray by inverse of node’s transformation

 // Check for intersection with shape

 // Check for intersection with children nodes

 // Transform intersection by node’s transformation

 // Return closest intersection in tree rooted at this node

}

Ray-Scene Intersection II
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

 // Transform ray by inverse of node’s transformation

 // Check for intersection with shape

 // Check for intersection with children nodes

 // Transform intersection by node’s transformation

 // Return closest intersection in tree rooted at this node

}

Note: directions (including
ray direction and surface normal N)
must be transformed by
inverse transpose of M

N

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
!  BSP trees

Ray Intersection Acceleration
•  What if there are a lot of nodes?

http://www.3dm3.com

Bounding Volumes
•  Check for intersection with  

simple bounding volume first

Bounding Volumes
•  Check for intersection with bounding volume first

Bounding Volumes
•  Check for intersection with bounding volume first
!  If ray doesn’t intersect bounding volume,  

then it can’t intersect its contents

Bounding Volumes
•  Check for intersection with bounding volume first
!  If already found a primitive intersection closer than

intersection with bounding box, then skip checking
contents of bounding box

Bounding Volume Hierarchies
•  Scene graph has hierarchy of bounding volumes
!  Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Bounding Volume Hierarchies
•  Checking bounding volumes hierarchically (within

each node) can greatly accelerate ray intersection

1

2 3 C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volume Hierarchies
R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)
{

 // Transform ray by inverse of node’s transformation
 // Check for intersection with shape

 // Check for intersection with children nodes
 for each child node
 // Check for intersection with child bounding box first
 bbox_intersection = Intersect child’s bounding box with ray
 if (bbox_intersection is a miss or further than closest_intersection) continue

 // Check for intersection with child contents
 child_intersection = ComputeIntersection(scene, child, ray);
 if (child_intersection is a hit and is closer than closest_intersection)
 closest_intersection = child_intersection;

 // Transform intersection by node’s transformation
 // Return closest intersection in tree rooted at this node

}

Sort Bounding Volume Intersections
•  Sort child bounding volume intersections and  

then visit child nodes in front-to-back order

•  Why?

Cache Node Intersections
•  For each node, store closest child intersection  

from previous ray and check that node first

1

2 3 C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volumes
•  Common primitives are:
!  Axis-aligned bounding box
!  Sphere

•  What are the tradeoffs?
!  Sphere has simple/efficient intersection code
!  Bounding box is generally “tighter”

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
Ø Uniform grids
!  Octrees
!  BSP trees

Uniform Grid
•  Construct uniform grid over scene
!  Index primitives according to overlaps with grid cells

A

B

C

D

E

F

Uniform Grid
•  Trace rays through grid cells
!  Fast
!  Incremental

A

B

C

D

E

FOnly check primitives
in intersected grid cells

Uniform Grid
•  Potential problem:
!  How choose suitable grid resolution?

A

B

C

D

E

F
Too little benefit

if grid is too coarse

Too much cost
if grid is too fine

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
Ø Octrees
!  BSP trees

Octree
•  Construct adaptive grid over scene
!  Recursively subdivide box-shaped cells into 8 octants
!  Index primitives by overlaps with cells

A

B

C

D

E

FGenerally fewer cells

Octree
•  Trace rays through neighbor cells
!  Fewer cells

A

B

C

D

E

FTrade-off fewer cells for
more expensive traversal

Octree
•  Or, check rays versus octree boxes hierarchically
!  Computing octree boxes 

while descending tree
!  Sort eight boxes  

front-to-back at each level
!  Check primitives/children  

inside box

A

B

C

D

E

F

Ray Intersection
•  Ray Intersection
!  Sphere
!  Triangle
!  Box
!  Scene

•  Ray Intersection Acceleration
!  Bounding volumes
!  Uniform grids
!  Octrees
Ø BSP trees

Binary Space Partition (BSP) Tree
•  Recursively partition space by planes
!  BSP tree nodes store partition plane and  

set of polygons lying on that partition plane
!  Every part of every polygon lies on a partition plane

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

de
f

g

Object

a

b

cde
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

Binary Space Partition (BSP) Tree
•  Traverse nodes of BSP tree front-to-back
!  Visit halfspace (child node) containing P0
!  Intersect polygons lying on partition plane
!  Visit halfspace (other child node) not containing P0

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

de
f

g

Object

a

b

cde
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

P0

Binary Space Partition (BSP) Tree
R3Intersection
ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t)
{

 // Compute parametric value of ray-plane intersection
 t = ray parameter for intersection with split plane of node
 if (t < min_t) || (t < max_t)) return no_intersection;

 // Compute side of partition plane that contains ray start point
 int side = (SignedDistance(node->plane, ray.Start()) < 0) ? 0 : 1;
 intersection1 = ComputeBSPIntersection(ray, node->child[side], min_t, t);
 if (intersection1 is a hit) return intersection1;
 intersection2 = ComputePolygonsIntersection(ray, node->polygons);
 if (intersection2 is a hit) return intersection2;
 intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);
 return intersection 3;

}

Other Accelerations
•  Screen space coherence – check > 1 ray at once
!  Beam tracing
!  Pencil tracing
!  Cone tracing

•  Memory coherence
!  Large scenes

•  Parallelism
!  Ray casting is “embarrassingly parallelizable”
!  Assignment 3a (raytracer) runs program per-pixel

•  etc.

Acceleration
•  Intersection acceleration techniques are important
!  Bounding volume hierarchies
!  Spatial partitions

•  General concepts
!  Sort objects spatially
!  Make trivial rejections quick
!  Perform checks hierarchically
!  Utilize coherence when possible

Expected time is sub-linear in number of primitives

Summary
•  Writing a simple ray casting renderer is easy
!  Generate rays
!  Intersection tests
!  Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Heckbert’s Business Card Ray Tracer
•  typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;

double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
=U.z;e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}/*minray!*/

Next Time is Illumination!

Without Illumination With Illumination

