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Syllabus
I. Image processing
II. Modeling
III. Rendering

IV. Animation
Image Processing 

(Rusty Coleman, CS426, Fall99) 

Modeling 
(Denis Zorin, CalTech) Animation 

(Angel, Plate 1) 

Rendering 
(Michael Bostock, CS426, Fall99) 



What is 3D Modeling?
•  Topics in computer graphics
!  Imaging = representing 2D images
!  Rendering = constructing 2D images from 3D models 
!  Modeling = representing 3D objects 
!  Animation = simulating changes over time 



Modeling
•  How do we ...
!  Represent 3D objects in a computer?
!  Acquire computer representations of 3D objects?
!  Manipulate computer representations of 3D objects?

Stanford Graphics Laboratory H&B Figure 10.46 



Modeling Background
•  Scene is usually approximated by 3D primitives
!  Point
!  Vector
!  Line segment
!  Ray
!  Line
!  Plane
!  Polygon



3D Point
•  Specifies a location
!  Represented by three coordinates
!  Infinitely small

typedef struct { 
 Coordinate x; 
 Coordinate y; 
 Coordinate z; 

} Point; (x,y,z) 

Origin 



3D Vector
•  Specifies a direction and a magnitude
!  Represented by three coordinates
!  Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
!  Has no location

typedef struct { 
 Coordinate dx; 
 Coordinate dy; 
 Coordinate dz; 

} Vector; 

(dx,dy,dz) 



3D Vector
•  Dot product of two 3D vectors
!  V1·V2 = ||V1 || || V2 || cos(Θ)

(dx1,dy1,dz1) 

(dx2,dy2 ,dz2) Θ



3D Vector
•  Cross product of two 3D vectors
!  V1xV2 = vector perpendicular to both V1 and V2
!  ||V1xV2|| = ||V1 || || V2 || sin(Θ)

(dx1,dy1,dz1) 

(dx2,dy2 ,dz2) Θ

V1xV2



3D Line Segment
•  Linear path between two points
!  Parametric representation:

» P = P1 + t (P2 - P1),    (0 ≤ t ≤ 1)

typedef struct { 
 Point P1; 
 Point P2; 

} Segment;

P1 

P2 

Origin 



3D Ray
•  Line segment with one endpoint at infinity
!  Parametric representation: 

» P = P1 + t V,    (0 <= t < ∞)
typedef struct { 

 Point P1; 
 Vector V; 

} Ray;

P1 

V 

Origin 



3D Line
•  Line segment with both endpoints at infinity
!  Parametric representation: 

» P = P1 + t V,    (-∞ < t < ∞)

P1 

typedef struct { 
 Point P1; 
 Vector V; 

} Line;

V 

Origin 



Origin 

3D Plane
•  A linear combination of three points

P1 

P3 P2 



Origin 

3D Plane
•  A linear combination of three points
!  Implicit representation: 

» P·N - d = 0, or
» ax + by + cz + d = 0

!  N is the plane “normal”
» Unit-length vector
» Perpendicular to plane

typedef struct { 
 Vector N; 
 Distance d; 

} Plane;
P1 

N = (a,b,c) 

d 

P3 P2 



3D Polygon
Set of points “inside” a sequence of coplanar points

typedef struct { 
 Point *points; 
 int npoints; 

} Polygon;

Points are in counter-clockwise order



3D Object Representations

How can this object be represented in a computer?



3D Object Representations

How about this one?



3D Object Representations

This one? H&B Figure 9.9 



3D Object Representations

This one?
H&B Figure 10.46 



3D Object Representations

This one? Stanford Graphics Laboratory 



3D Object Representations

This one?



3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision 
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific



Equivalence of Representations
•  Thesis:
!  Each representation has enough expressive power  

to model the shape of any geometric object
!  It is possible to perform all geometric operations  

with any fundamental representation

•  Analogous to Turing-equivalence
!  Computers and programming languages are  

Turing-equivalent, but each has its benefits…

Naylor 



Why Different Representations?
Efficiency for different tasks
!  Acquisition
!  Rendering 
!  Manipulation
!  Animation
!  Analysis

Data structures determine algorithms



Why Different Representations?
Desirable properties depend on intended use
!  Easy to acquire
!  Accurate
!  Concise
!  Intuitive editing
!  Efficient editing
!  Efficient display
!  Efficient intersections
!  Guaranteed validity
!  Guaranteed smoothness
!  etc.
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Range Image
Set of 3D points mapping to pixels of depth image
!  Can be acquired from range scanner

Brian Curless 
SIGGRAPH 99  
Course #4 Notes 

Range Image Tesselation Range Surface 

Cyberware 

Stanford 



Point Cloud
Unstructured set of 3D point samples
!  Acquired from range finder, computer vision, etc

Hoppe 

Hoppe Microscribe-3D 

Polhemus 



3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision 
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific



Polygonal Mesh
Connected set of polygons (often triangles)

Stanford Graphics Laboratory 



Subdivision Surface
Coarse mesh & subdivision rule
!  Smooth surface is limit of sequence of refinements 

Zorin & Schroeder 
SIGGRAPH 99  
Course Notes 



Parametric Surface
Tensor-product spline patches
!  Each patch is parametric function
!  Careful constraints to maintain continuity

FvDFH Figure 11.44 

x = Fx(u,v) 
y = Fy(u,v) 
z = Fz(u,v) 

u v 



Implicit Surface
Set of all points satisfying: F(x,y,z) = 0

Polygonal Model Implicit Model 

Bill Lorensen 
SIGGRAPH 99 
Course #4 Notes 



3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision 
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific



FvDFH Figure 12.20 

Voxel grid
Uniform volumetric grid of samples:
!  Occupancy 

(object vs. empty space)
!  Density
!  Color
!  Other function  

(speed, temperature, etc.)

!  Often acquired via  
simulation or from 
CAT, MRI, etc.

Stanford Graphics Laboratory 



BSP Tree
Hierarchical Binary Space Partition with  
solid/empty cells labeled
!  Constructed from polygonal representations
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Naylor 



CSG
Constructive Solid Geometry: set operations (union, 
difference, intersection) applied to simple shapes

FvDFH Figure 12.27 H&B Figure 9.9 



Sweep
Solid swept by curve along trajectory

Removal Path Sweep Model 

Bill Lorensen 
SIGGRAPH 99 
Course #4 Notes 



3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision 
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific



Scene Graph
Union of objects at leaf nodes

Bell Laboratories 

avalon.viewpoint.com 



Application Specific

Apo A-1 
(Theoretical Biophysics Group, 

University of Illinois at Urbana-Champaign) 

Architectural Floorplan 
(CS Building, Princeton University) 



Taxonomy of 3D Representations

Discrete Continuous 

Combinatorial Functional 

Parametric Implicit Topological Set Membership  

Voxels, 
Point sets 

Mesh
Subdivision 

BSP Tree
Cell Complex 

Bezier
B-Spline 

Algebraic 

Naylor 

3D Shape 



Equivalence of Representations
•  Thesis:
!  Each representation has enough expressive power  

to model the shape of any geometric object
!  It is possible to perform all geometric operations  

with any fundamental representation

•  Analogous to Turing-equivalence
!  Computers and programming languages are  

Turing-equivalent, but each has its benefits…

Naylor 



Computational Differences
•  Efficiency
!  Representational complexity (e.g. surface vs. volume)
!  Computational complexity (e.g. O(n2) vs O(n3) )
!  Space/time trade-offs  (e.g. tree data structures)
!  Numerical accuracy/stability (e.g. degree of polynomial)

•  Simplicity
!  Ease of acquisition
!  Hardware acceleration
!  Software creation and maintenance

•  Usability
!  Designer interface vs. computational engine



Modeling Operations
What can we do with a 3D object representation?
!  Edit
!  Transform
!  Smooth
!  Render
!  Animate
!  Morph
!  Compress
!  Transmit
!  Analyze
!  etc.

Digital Michelangelo 

Thouis “Ray” Jones Sand et al. 

Pirates of the Caribbean 



Upcoming Lectures
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision 
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific



Bonus Today…
Nora gives a brief introduction to modeling in Maya.

Blender free for everyone: 
www.blender.org

[www.eliwhitney.org]

Maya free for students: 
www.autodesk.com/education

[getintopc.com]


