
3D Modeling

COS 426, Spring 2016
Princeton University

Syllabus
I. Image processing
II. Modeling
III. Rendering

IV. Animation
Image Processing

(Rusty Coleman, CS426, Fall99)

Modeling
(Denis Zorin, CalTech) Animation

(Angel, Plate 1)

Rendering
(Michael Bostock, CS426, Fall99)

What is 3D Modeling?
•  Topics in computer graphics
!  Imaging = representing 2D images
!  Rendering = constructing 2D images from 3D models
!  Modeling = representing 3D objects
!  Animation = simulating changes over time

Modeling
•  How do we ...
!  Represent 3D objects in a computer?
!  Acquire computer representations of 3D objects?
!  Manipulate computer representations of 3D objects?

Stanford Graphics Laboratory H&B Figure 10.46

Modeling Background
•  Scene is usually approximated by 3D primitives
!  Point
!  Vector
!  Line segment
!  Ray
!  Line
!  Plane
!  Polygon

3D Point
•  Specifies a location
!  Represented by three coordinates
!  Infinitely small

typedef struct {
 Coordinate x;
 Coordinate y;
 Coordinate z;

} Point; (x,y,z)

Origin

3D Vector
•  Specifies a direction and a magnitude
!  Represented by three coordinates
!  Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
!  Has no location

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;

} Vector;

(dx,dy,dz)

3D Vector
•  Dot product of two 3D vectors
!  V1·V2 = ||V1 || || V2 || cos(Θ)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2) Θ

3D Vector
•  Cross product of two 3D vectors
!  V1xV2 = vector perpendicular to both V1 and V2
!  ||V1xV2|| = ||V1 || || V2 || sin(Θ)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2) Θ

V1xV2

3D Line Segment
•  Linear path between two points
!  Parametric representation:

» P = P1 + t (P2 - P1), (0 ≤ t ≤ 1)

typedef struct {
 Point P1;
 Point P2;

} Segment;

P1

P2

Origin

3D Ray
•  Line segment with one endpoint at infinity
!  Parametric representation:

» P = P1 + t V, (0 <= t < ∞)
typedef struct {

 Point P1;
 Vector V;

} Ray;

P1

V

Origin

3D Line
•  Line segment with both endpoints at infinity
!  Parametric representation:

» P = P1 + t V, (-∞ < t < ∞)

P1

typedef struct {
 Point P1;
 Vector V;

} Line;

V

Origin

Origin

3D Plane
•  A linear combination of three points

P1

P3 P2

Origin

3D Plane
•  A linear combination of three points
!  Implicit representation:

» P·N - d = 0, or
» ax + by + cz + d = 0

!  N is the plane “normal”
» Unit-length vector
» Perpendicular to plane

typedef struct {
 Vector N;
 Distance d;

} Plane;
P1

N = (a,b,c)

d

P3 P2

3D Polygon
Set of points “inside” a sequence of coplanar points

typedef struct {
 Point *points;
 int npoints;

} Polygon;

Points are in counter-clockwise order

3D Object Representations

How can this object be represented in a computer?

3D Object Representations

How about this one?

3D Object Representations

This one? H&B Figure 9.9

3D Object Representations

This one?
H&B Figure 10.46

3D Object Representations

This one? Stanford Graphics Laboratory

3D Object Representations

This one?

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

Equivalence of Representations
•  Thesis:
!  Each representation has enough expressive power  

to model the shape of any geometric object
!  It is possible to perform all geometric operations  

with any fundamental representation

•  Analogous to Turing-equivalence
!  Computers and programming languages are  

Turing-equivalent, but each has its benefits…

Naylor

Why Different Representations?
Efficiency for different tasks
!  Acquisition
!  Rendering
!  Manipulation
!  Animation
!  Analysis

Data structures determine algorithms

Why Different Representations?
Desirable properties depend on intended use
!  Easy to acquire
!  Accurate
!  Concise
!  Intuitive editing
!  Efficient editing
!  Efficient display
!  Efficient intersections
!  Guaranteed validity
!  Guaranteed smoothness
!  etc.

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

Range Image
Set of 3D points mapping to pixels of depth image
!  Can be acquired from range scanner

Brian Curless
SIGGRAPH 99
Course #4 Notes

Range Image Tesselation Range Surface

Cyberware

Stanford

Point Cloud
Unstructured set of 3D point samples
!  Acquired from range finder, computer vision, etc

Hoppe

Hoppe Microscribe-3D

Polhemus

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

Polygonal Mesh
Connected set of polygons (often triangles)

Stanford Graphics Laboratory

Subdivision Surface
Coarse mesh & subdivision rule
!  Smooth surface is limit of sequence of refinements

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Parametric Surface
Tensor-product spline patches
!  Each patch is parametric function
!  Careful constraints to maintain continuity

FvDFH Figure 11.44

x = Fx(u,v)
y = Fy(u,v)
z = Fz(u,v)

u v

Implicit Surface
Set of all points satisfying: F(x,y,z) = 0

Polygonal Model Implicit Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

FvDFH Figure 12.20

Voxel grid
Uniform volumetric grid of samples:
!  Occupancy 

(object vs. empty space)
!  Density
!  Color
!  Other function  

(speed, temperature, etc.)

!  Often acquired via  
simulation or from 
CAT, MRI, etc.

Stanford Graphics Laboratory

BSP Tree
Hierarchical Binary Space Partition with  
solid/empty cells labeled
!  Constructed from polygonal representations

a

b

c

d
e

f

1

2

3

7

4

5

6

a

b c

de
f

g

Object

a

b

cde
f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

Naylor

CSG
Constructive Solid Geometry: set operations (union,
difference, intersection) applied to simple shapes

FvDFH Figure 12.27 H&B Figure 9.9

Sweep
Solid swept by curve along trajectory

Removal Path Sweep Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes

3D Object Representations
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

Scene Graph
Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com

Application Specific

Apo A-1
(Theoretical Biophysics Group,

University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)

Taxonomy of 3D Representations

Discrete Continuous

Combinatorial Functional

Parametric Implicit Topological Set Membership

Voxels, 
Point sets

Mesh
Subdivision

BSP Tree
Cell Complex

Bezier
B-Spline

Algebraic

Naylor

3D Shape

Equivalence of Representations
•  Thesis:
!  Each representation has enough expressive power  

to model the shape of any geometric object
!  It is possible to perform all geometric operations  

with any fundamental representation

•  Analogous to Turing-equivalence
!  Computers and programming languages are  

Turing-equivalent, but each has its benefits…

Naylor

Computational Differences
•  Efficiency
!  Representational complexity (e.g. surface vs. volume)
!  Computational complexity (e.g. O(n2) vs O(n3))
!  Space/time trade-offs (e.g. tree data structures)
!  Numerical accuracy/stability (e.g. degree of polynomial)

•  Simplicity
!  Ease of acquisition
!  Hardware acceleration
!  Software creation and maintenance

•  Usability
!  Designer interface vs. computational engine

Modeling Operations
What can we do with a 3D object representation?
!  Edit
!  Transform
!  Smooth
!  Render
!  Animate
!  Morph
!  Compress
!  Transmit
!  Analyze
!  etc.

Digital Michelangelo

Thouis “Ray” Jones Sand et al.

Pirates of the Caribbean

Upcoming Lectures
•  Points
!  Range image
!  Point cloud

•  Surfaces
!  Polygonal mesh
!  Subdivision
!  Parametric
!  Implicit

•  Solids
!  Voxels
!  BSP tree
!  CSG
!  Sweep

•  High-level structures
!  Scene graph
!  Application specific

Bonus Today…
Nora gives a brief introduction to modeling in Maya.

Blender free for everyone: 
www.blender.org

[www.eliwhitney.org]

Maya free for students: 
www.autodesk.com/education

[getintopc.com]

