3/25/14

N1

Finger table

Scalable algorithms for discovery

* If many nodes are available
to cache, which one should
file be assigned to?

@

l
AN

RN

0

CDN server

. . * If content is cached in some /
Distributed Hash Tables node, how can we discover ﬂ

where it is located, avoiding
Mike Freedman centralized directory or all-  CDNserver

to-all communication? CDN server
COS 461: Computer Networks

Akamai CDN: hashing to responsibility within cluster
http://www.cs.princeton.edu/courses/archive/spri4/cos461/

Today: What if you don’t know complete set of nodes?

Partitioning Problem Consistent Hashing

e Consider problem of data partition:

lookup(key;)
— Given document X, choose one of k servers to use .

- = ‘
* Suppose we use modulo hashing = = = ajlg a4
— Number servers 1..k key, key, ey

— Place X on server i = (X mod k)

* Problem? Data may not be uniformly distributed * Consistent hashing partitions key-space among nodes

— Place X on server j = hash (X) mod k * Contact appropriate node to lookup/store key
* Problem? What happens if a server fails or joins (k 2> kt1)? _ Blue node determines red node is responsible for key
* Problem? What is different clients has different estimate of k? !
* Answer: All entries get remapped to new nodes! — Blue node sends lookup or insert to red node




3/25/14

Consistent Hashing

5 Iy o

Bl 4 =\ J= ==y {

ooool o0o10 0110 1010 | 1100 1110 1111
0001 0100 1011

¢ Partitioning key-space among nodes

— Nodes choose random identifiers: e.g., hash(IP)
— Keys randomly distributed in ID-space: e.g., hash(URL)
— Keys assigned to node “nearest” in ID-space

— Spreads ownership of keys evenly across nodes

Consistent Hashing

* Construction »
— Assign n hash buckets to random points

on mod 2k circle; hash key size = k 12 4
— Map object to random position on circle

— Hash of object = closest clockwise bucket v 3

— successor (key) = bucket

* Desired features
— Balanced: No bucket has disproportionate number of objects

— Smoothness: Addition/removal of bucket does not cause
movement among existing buckets (only immediate buckets)

Consistent hashing and failures

0
* Consider network of n nodes 14
* If each node has 1 bucket .
— Owns 1/nt of keyspace in expectation
— Says nothing of request load per bucket
* If a node fails: 8

(A) Nobody owns keyspace (B) Keyspace assigned to random node
(C) Successor owns keyspaces (D) Predecessor owns keyspace

* After a node fails:
(A) Load is equally balanced over all nodes
(B) Some node has disproportional load compared to others

Consistent hashing and failures

0
* Consider network of n nodes 14
* If each node has 1 bucket .
— Owns 1/nt of keyspace in expectation
— Says nothing of request load per bucket
* If a node fails: 8

— Its successor takes over bucket
— Achieves smoothness goal: Only localized shift, not O(n)
— But now successor owns 2 buckets: keyspace of size 2/n

Instead, if each node maintains v random nodelDs, not 1
— “Virtual” nodes spread over ID space, each of size 1 /vn
— Upon failure, v successors take over, each now stores (v+1) /vn




3/25/14

Consistent hashing vs. DHTs

Consistent Distributed
Hashing Hash Tables
Routing table size 0O(n) O(log n)
Lookup / Routing 0(1) O(log n)
Join/leave: 0o(n) O(log n)
Routing updates
Join/leave: 0(1) 0(1)
Key Movement

Distributed Hash Table

ot
AL A A

al g j=} |
0000 0010 0110 1010 1100 1110 1111
0001 0100 1011

* Nodes’ neighbors selected from particular distribution

- Visual keyspace as a tree in distance from a node

Distributed Hash Table

a2 4 =y A 4 A A

0000 0010 0110 1010 1100 1110 1111

* Nodes’ neighbors selected from particular distribution
- Visual keyspace as a tree in distance from a node

— At least one neighbor known per subtree of increasing size /
distance from node

Distributed Hash Table

a2 O =\ A L A A

0000 0010 0110 1010 1100 1110 1111

* Nodes’ neighbors selected from particular distribution
- Visual keyspace as a tree in distance from a node

- At least one neighbor known per subtree of increasing size /
distance from node

¢ Route greedily towards desired key via overlay hops




3/25/14

The Chord DHT

¢ Chord ring: 1D space mod 210

— nodeid = SHA1 (IP address, i)
for i=1..v virtual IDs Ns1 -
— keyid = SHA1 (name) Nag

* Routing correctness:

— Each node knows successor and
’ [Kas na
predecessor on ring N2

K30

* Routing efficiency:
— Each node knows O(log n) well-
distributed neighbors

Basic lookup in Chord

N1

lookup (id):
if ( id > pred.id && [ks4 ] nsgy
id <= my.id )

return my.id;

lookup(K54)

N5

N4g
else

return succ.lookup(id); N21

* Route hop by hop via successors
— 0O(n) hops to find destination id

Efficient lookup in Chord

lookup (id):
if ( id > pred.id && [Ks4 | Nss
id <= my.id )

return my.id;

lookup(54)

else
// fingers() by decreasing distance 2
for finger in fingers(): ¥

if id >= finger.id

N32

return finger.lookup(id);
return succ.lookup(id);

* Route greedily via distant “finger” nodes
— O(log n) hops to find destination id

Building routing tables

N1

lookup(54)

Finger table

B+ 1 N14
Ne+2|Nid
N+ 4 [N14
Ne + 8 N2t
a2
[ve +32[N42

Foriin1..logn:
fingerl[i] = successor ( (my.id + 2') mod 2160 )




3/25/14

Joining and managing routing

. N2
¢ Join: /
i succsssoriNz1),/
— Choose nodeid s
— Lookup (my.id) to find place on ring N
K24

— During lookup, discover future successor a0
— Learn predecessor from successor /- N2t
— Update succ and pred that you joined //
— Find fingers by lookup ((my.id + 2") mod 2160 ) f;/"“ze

8

N3Z

¢ Monitor:
— If doesn’t respond for some time, find new o N2
|
e Leave: Just go, already! ‘ .J@
— (Warn your neighbors if you feel like it) N2 fiee]

Performance optimizations

A 4 =y A O A A
0000 0010 0110 1010 1100 1110 1111

¢ Routing entries need not be drawn from strict
distribution as finger algorithm shown

— Choose node with lowest latency to you

— Will still get you ~ % closer to destination

« Less flexibility in choice as closer to destination

DHT Design Goals

¢ An “overlay” network with:
— Flexible mapping of keys to physical nodes
— Small network diameter
— Small degree (fanout)
— Local routing decisions
— Robustness to churn
— Routing flexibility
— Decent locality (low “stretch”)

« Different “storage” mechanisms considered:
— Persistence w/ additional mechanisms for fault recovery
— Best effort caching and maintenance via soft state

Storage models

* Store only on key’s immediate successor

— Churn, routing issues, packet loss make lookup
failure more likely

* Store on k successors

— When nodes detect succ/pred fail, re-replicate

— Use erasure coding: can recover with j-out-of-k
“chunks” of file, each chunk smaller than full replica

* Cache along reverse lookup path

— Provided data is immutable
— ...and performing recursive responses




Summary

Peer-to-peer systems

— Unstructured systems (next Monday)

* Finding hay, performing keyword search
— Structured systems (DHTs)

* Finding needles, exact match

Distributed hash tables

— Based around consistent hashing with views of O(log n)
— Chord, Pastry, CAN, Koorde, Kademlia, Tapestry, Viceroy, ...

* Lots of systems issues

— Heterogeneity, storage models, locality, churn management,
underlay issues, ...

— DHTs deployed in wild: Vuze (Kademlia) has 1M+ active users

3/25/14



