

Link = Medium + Adapters

Link-Layer Services

- Encoding
 - Represent the 0s and 1s
- Framing
 - Encapsulate packet into frame, adding header/trailer $\,$
- Error detection
 - Receiver detecting errors with checksums
- Error correction
 - Receiver optionally correcting errors
- Flow control
 - Pacing between sending and receiving nodes

Addresses

Medium Access Control Address

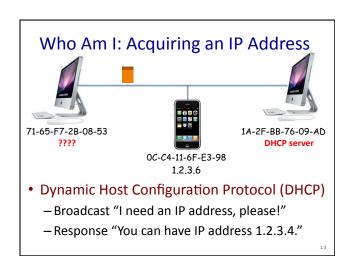
- Identify the sending and receiving adapter
 - Unique identifier for each network adapter
 - Identifies the intended receiver(s) of the frame
 - ... and the sender who sent the frame

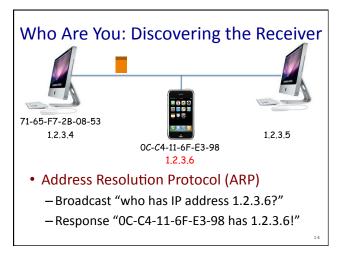
Medium Access Control Address

- MAC address (e.g., 00-15-C5-49-04-A9)
 - Numerical address used within a link
 - Unique, hard-coded in the adapter when it is built
 - Flat name space of 48 bits
- Hierarchical allocation: Global uniqueness!
 - Blocks: assigned to vendors (e.g., Dell) by the IEEE
 - Adapters: assigned by the vendor from its block
- Broadcast address (i.e., FF-FF-FF-FF)
 - Send the frame to *all* adapters

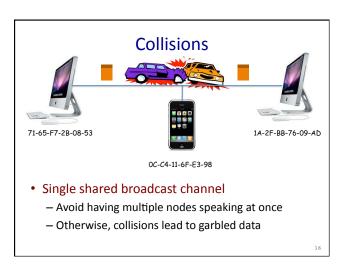
1.0

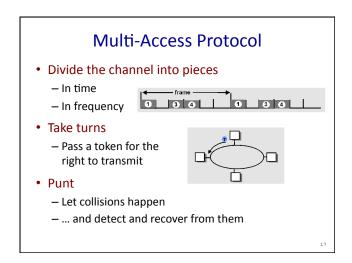
As an Aside: Promiscuous Mode

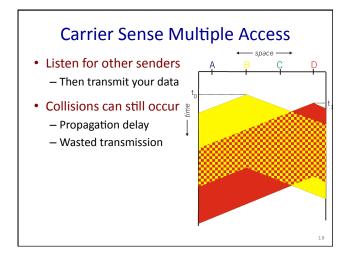

- Normal adapter: receives frames sent to
 - The local MAC address
 - Broadcast address FF-FF-FF-FF-FF
- Promiscuous mode
 - Receive everything, independent of destination MAC
- · Useful for packet sniffing
 - Network monitoring
 - E.g., wireshark, tcpdump

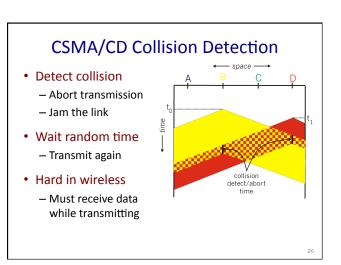


11


Why Not Just Use IP Addresses?

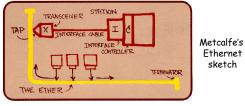

- Links can support any network protocol
 - Not just for IP (e.g., IPX, Appletalk, X.25, ...)
 - Different addresses on different kinds of links
- An adapter may move to a new location
 - So, cannot simply assign a static IP address
 - Instead, must reconfigure the adapter's IP address
- Must identify the adapter during bootstrap
 - Need to talk to the adapter to assign it an IP address





Comparing the Three Approaches

- · Channel partitioning is
 - (a) Efficient/fair at high load, inefficient at low load
 - (b) Inefficient at high load, efficient/fair at low load
- "Taking turns"
 - (a) Inefficient at high load
 - (b) Efficient at all loads
 - (c) Robust to failures
- Random access
 - (a) Inefficient at low load
 - (b) Efficient at all load
 - (c) Robust to failures


Comparing the Three Approaches

- · Channel partitioning is
 - (a) Efficient/fair at high load, inefficient at low load
 - (b) Inefficient at high load, efficient/fair at low load
- "Taking turns"
 - (a) Inefficient at high load
 - (b) Efficient at all loads
 - (c) Robust to failures
- Random access
 - (a) Inefficient at low load
 - (b) Efficient at all load
 - (c) Robust to failures

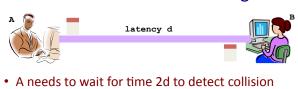
Ethernet

Ethernet

- Dominant wired LAN technology
- · First widely used LAN technology
- Kept up with speed race: 10 Mbps 40 Gbps

Ethernet sketch

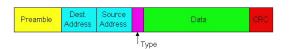
Ethernet Uses CSMA/CD


- · Carrier Sense: wait for link to be idle
 - Channel idle: start transmitting
 - Channel busy: wait until idle
- Collision Detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission, and send jam signal
- · Random Access: exponential back-off
 - After collision, wait random time before trying again
 - After mth collision, choose K randomly from {0, ..., 2^m-1}
 - ... and wait for K*512 bit times before trying again

Limitations on Ethernet Length

- · Latency depends on physical length of link
 - Time to propagate a packet from one end to other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - ... so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
 - But A doesn't see collision till t+2d

Limitations on Ethernet Length



- So, A should keep transmitting during this period
- ... and keep an eye out for a possible collision
- Imposes restrictions on Ethernet
 - Maximum length of the wire: 2500 meters
 - Minimum length of the packet: 512 bits (64 bytes)

27

Ethernet Frame Structure

• Sending adapter encapsulates packet in frame

- · Preamble: synchronization
 - Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates

Unreliable, Connectionless Service

- Connectionless
 - No handshaking between send and receive adapter
- Unreliable
 - Receiving adapter doesn't send ACKs or NACKs
 - Packets passed to network layer can have gaps
 - Gaps can be filled by transport protocol (e.g., TCP)
 - Otherwise, the application will see the gaps

Hubs and Switches

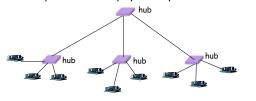
Physical Layer: Repeaters

• Distance limitation in local-area networks

– Electrical signal becomes weaker as it travels

– Imposes a limit on the length of a LAN

• Repeaters join LANs together

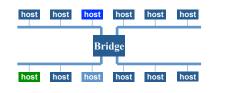

– Analog electronic device

– Continuously monitors electrical signals

– Transmits an amplified copy

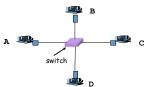
Physical Layer: Hubs

- · Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

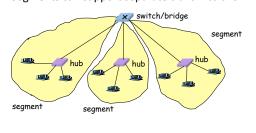

Limitations of Repeaters and Hubs

- · One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - Can't interconnect between different rates/formats
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

. .


Link Layer: Bridges

- · Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate segment
- Each segment can carry its own traffic


Link Layer: Switches

- Typically connects individual computers
 - A switch is essentially the same as a bridge
 - ... though typically used to connect hosts
- Supports concurrent communication
 - Host A can talk to C, while B talks to D

Bridges/Switches: Traffic Isolation

- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

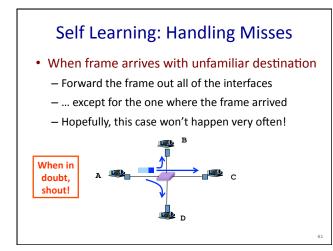
Switches vs. Hubs

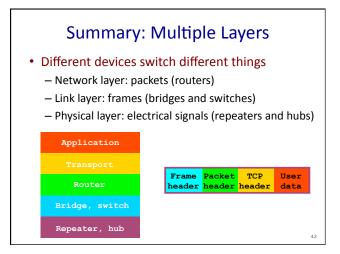
- Compared to hubs, Ethernet switches support
 - (a) Larger geographic span
 - (b) Similar span
 - (c) Smaller span
- · Compared to hubs, switches provides
 - (a) Higher load on links
 - (b) Less privacy
 - (c) Heterogenous communication technologies

Switches vs. Hubs

- Compared to hubs, Ethernet switches support
 - (a) Larger geographic span
 - (b) Similar span
 - (c) Smaller span
- · Compared to hubs, switches provides
 - (a) Higher load on links
 - (b) Less privacy
 - (c) Heterogenous communication technologies


- Inspect the source MAC address


• When a frame arrives


- Associate the address with the incoming interface

Self Learning: Building the Table

- Store the mapping in the switch table
- Use a timer to eventually forget the mapping

Conclusion

- Links
 - Connect two or more network adapters
 - ... each with a unique address
 - ... over a shared communication medium
- Coming next
 - Friday: Socket Programming "How To"
 - Monday: Network layer (IP)
- · Get started
 - On assignment #0 on socket programming