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Tractability

Polynomial time (p-time) = O(nk), where n is the 
input size and k is a constant

Problems solvable in p-time are considered 
tractable

NP-complete problems have no known p-time 
solution, considered intractable



Tractability

Difference between tractability and intractability 
can be slight

Can find shortest path in graph in O(m + nlgn) time, 
but finding longest simple path is NP-complete

Can find satisfiable assignment for 2-CNF formula in 
O(n) time, but for 3-CNF is NP-complete:

(x1  x2)  (x1  x3)  (x2  x3)
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Formal-language framework

Alphabet  = finite set of symbols

Language L over  is any subset of strings in * 

We’ll focus on  = {0, 1}

L = {10, 11, 101, 111, 1011, …} is language of primes



Decision problems

A decision problem has a yes/no answer

Different, but related to optimization problem, 
where trying to maximize/minimize a value

Any decision problem Q can be viewed as 
language: L = {x  {0,1}* : Q(x) = 1}

Q decides L: every string in L accepted by Q, 
every string not in L rejected



Example of a decision problem

PATH = {G, u, v, k : G = (V, E) is an undirected 
graph, u,v ∈ V, k ≥ 0 is an integer, and  a path 
from u to v in G with  k edges}

Encoding of input G, u, v, k is important! We 
express running times as function of input size

Corresponding optimization problem is 
SHORTEST-PATH



Complexity class P

P = {L {0, 1}* :  an algorithm A that 
decides L in p-time}

PATH  P



Polynomial-time verification

Algorithm A verifies language L if
L = {x  {0, 1}* :  y  {0, 1}* s.t. A(x, y) = 1}

Can verify PATH given input G, u, v, k and path 
from u to v

PATH  P, so verifying and deciding take p-time

For some languages, however, verifying much easier 
than deciding
SUBSET-SUM: Given finite set S of integers, is there a 
subset whose sum is exactly t?



Complexity class NP

Let A be a p-time algorithm and k a constant:

NP = {L  {0, 1}* :  a certificate y, |y| = O(|x|k), 
and an algorithm A s.t. A(x, y) = 1}

SUBSET-SUM  NP



P vs. NP

Not much is known, unfortunately

Can think of NP as the ability to appreciate a 
solution, P as the ability to produce one

P  NP 

Don’t even know if NP closed under 
complement, i.e. NP = co-NP?
Does L  NP imply Ḹ  NP? 



P vs. NP



Comparing hardness

NP-complete problems are the “hardest” in NP: 
if any NP-complete problem is p-time solvable, 
then all problems in NP are p-time solvable

How to formally compare easiness/hardness of 
problems?



Reductions

Reduce language L1 to L2 via function f:

1. Convert input x of L1 to instance f(x) of L2

2. Apply decision algorithm for L2 to f(x)

Running time = time to compute f + time to 
apply decision algorithm for L2

Write as L1  L2



Reductions show easiness/hardness

To show L1 is easy, reduce it to something we know 
is easy (e.g., matrix mult., network flow, etc.)

L1  easy

Use algorithm for easy language to decide L1

To show L1 is hard, reduce something we know is 
hard to it (e.g., NP-complete problem):

hard  L1

If L1 was easy, hard would be easy too



Polynomial-time reducibility

L1 is p-time reducible to L2, or L1 p L2, if  a p-
time computable function f : {0, 1}*  {0, 1}* 
s.t. for all x  {0, 1}*, x  L1 iff f(x)  L2

Lemma. If L1 p L2 and L2  P, then L1  P



Complexity class NPC

A language L  {0, 1}* is NP-complete if:

1. L  NP, and

2. L’ p L for every L’  NP, i.e. L is NP-hard

Lemma. If L is language s.t. L’ p L where L’ 
NPC, then L is NP-hard. If L  NP, then L  NPC.

Theorem. If any NPC problem is p-time solvable, 
then P = NP.



P, NP, and NPC



NPC reductions

Lemma. If L is language s.t. L’ p L where L’  NPC, 
then L is NP-hard. If L  NP, then L  NPC.

This gives us a recipe for proving any L  NPC:
1. Prove L  NP

2. Select L’  NPC

3. Describe algorithm to compute f mapping every input 
x of L’ to input f(x) of L

4. Prove f satisfies x  L’ iff f(x)  L, for all x  {0, 1}*

5. Prove computing f takes p-time



Bootstrapping

Need one language in NPC to get started

SAT = { :  is a satisfiable boolean formula}

Can the variables of  be assigned values in {0, 1} s.t. 
 evaluates to 1?



Cook-Levin theorem

Theorem. SAT  NPC.

Proof. SAT  NP since certificate is satisfying 
assignment of variables. To show SAT is NP-hard, 
must show every L  NP is p-time reducible to it.

Idea: Use p-time verifier A(x,y) of L to construct 
input  of SAT s.t. verifier says “yes” iff  satisfiable



Verifier: Turing Machine

Church-Turing thesis: Everything computable is 
computable by a Turing machine

/ / / / / / b \ \ \ \ \ \     

   -3 -2 -1 0 1 2 3   

Finite Control

certificate inputblank blank

read/write head

unbounded tape



In one step, can write a symbol, move head one 
position, change state

What to do is based on state and symbol read

Fixed # of states: start state, “yes” state, (“no” 
state); fixed # of tape symbols, including blank

Explicit worst-case p-time bound p(n)



Proof plan

Given L  NP we have Turing machine that 
implements verifier A(x,y) 

Input x, |x| = n, is “yes” instance iff for some 
certificate y, machine reaches “yes” state within 
p(n) steps from start state
Loops in “yes” state if gets there earlier

Construct  = f(x) that is satisfiable iff this happens
x is fixed and used to construct f(x), but y is unspecified



Variables in 

States: 1,…, w // 1 = start, w = “yes”

Symbols:  1,…, z // 1 = blank, rest input
// symbols like ‘0’ and ‘1’

Tape cells: -p(n),..., 0,…, p(n)

Time: 0, 1,…, p(n)



Variables:

hit: true if head on tape cell i at time t,
p(n)  i  p(n), 0  t  p(n)

sjt: true if state j at time t, 
1  j  w, 0  t  p(n)

cikt: true if tape cell i holds symbol k at time t, 
p(n)  i  p(n), 1  k  z, 0  t  p(n)



What does  need to say?

At most one state, head position, and symbol 
per cell at each time:

hit  hi’t,  i  i’, all t

sjt  sj’t,  j  j’, all t

cikt  cik’t, k  k’, all i, all t



Correct initial state, head position, and tape 
contents:

h00  s10  c010  c1k10  c2k20  …  cnkn0  c(n+1)10 

…  cp(n)10

Input is k1,…, kn, followed by blanks to right

Correct final state:

swp(n)



Correct transitions: e.g., if machine in state j
reads k, it then writes k’, moves head right, 
and changes to state j’:

sjt  hit  cikt  sj’(t+1)  h(i+1)(t+1)  cik’(t+1),  all i, t

Unread tape cells are unaffected:

hit  ci’kt  ci’k(t+1),  i  i’, all k, t



Wrapping up

Any proof that gives “yes” execution gives 
satisfying assignment, and vice versa

Also  contains O(p(n)2) variables, O(p(n)2) clauses 

 SAT  NPC

Now that we are bootstrapped, much easier to 
prove other L  NPC



Recall recipe for NPC proofs

1. Prove L  NP

2. Select L’  NPC

3. Describe algorithm to compute f mapping 
every input x of L’ to input f(x) of L

4. Prove f satisfies x  L’ iff f(x)  L, for all x 
{0, 1}*

5. Prove computing f takes p-time



3-CNF-SAT  NPC

3-CNF-SAT = { :  is a satisfiable 3-CNF 
boolean formula}

 is 3-CNF if it is AND of clauses, each of which is 
OR of three literals (variable or negation)

(x1  x1  x2)  (x3  x2  x4)  (x1  x3  x4)

Proof. Show SAT p 3-CNF-SAT



Given input of SAT, construct binary parse tree, 
introduce variable yi for each internal node

E.g.,  = ((x1  x2)  ((x1  x3)  x4))  x2



Rewrite as AND of root and clauses describing 
operation of each node:

Each clause has at most three literals



Write truth table for each clause, e.g. for 
’1 = (y1  (y2  x2)):

Write DNF (OR of ANDs) for ’1:
’1 = (y1  y2  x2)  (y1  y2  x2)  …

Use DeMorgan’s laws to convert to CNF:
’’1 = (y1  y2  x2)  (y1  y2  x2)  …



If any clause has < three literals, augment with 
dummy variables p, q

(l1  l2)  (l1  l2  p)  (l1  l2  p)

Resulting 3-CNF formula is satisfiable iff original 
SAT formula is satisfiable



CLIQUE  NPC

CLIQUE = {G, k : graph G = (V, E) has clique of 
size k}

Naïve algorithm runs in (k2  |V|Ck))

Proof. Show 3-CNF-SAT p CLIQUE



Given formula  = c1  c2  …  ck, construct input 
of CLIQUE:
For each cr = (l1

r  l2
r  l3

r), place v1
r, v2

r, v3
r in V

Add edge between vi
r and vj

s if r  s and corresponding 
literals are consistent

If  is satisfiable, at least one literal in each cr is 1 
set of k vertices that are completely connected

If G has clique of size k, contains exactly one vertex 
per clause  satisfied by assigning 1 to 
corresponding literals



VERTEX-COVER  NPC

VERTEX-COVER = {G, k : graph G = (V, E) has 
vertex cover of size k}

Vertex cover is V’  V s.t. if (u, v)  E, then u 
V’ or v  V’ or both 

Proof. Show CLIQUE p VERTEX-COVER



Given input G, k of CLIQUE, construct input of 
VERTEX-COVER:
Ḡ, |V|  k, where Ḡ = (V, Ē)

If G has clique V’, |V’| = k, then V  V’ is vertex 
cover of Ḡ:
(u, v)  Ē  either u or v not in V’, since (u, v)  E

 at least one of u or v in V – V’, so covered

If Ḡ has vertex cover V’  V, |V’| = |V|  k, then V –
V’ is clique of G of size k
(u, v)  Ē  u  V’ or v  V’ or both

if u  V’ and v  V’, then (u, v)  E



SUBSET-SUM  NPC

SUBSET-SUM = {S, t : S  N, t  N and  a
subset S’ ⊆ S s.t. t = sS’ s}

Integers encoded in binary! If t encoded in 
unary, can solve SUBSET-SUM in p-time, i.e. 
weakly NPC (vs. strongly NPC)

Proof. Show 3-CNF-SAT p SUBSET-SUM



Given formula , assume w.l.o.g. each variable 
appears in at least one clause, and variable and 
negation don’t appear in same clause

Construct input of SUBSET-SUM:
2 numbers per variable xi, 1  i  n, indicates if 
variable or negation is in a clause

2 numbers per clause cj, 1  j  k, slack variables

Each digit labeled by variable/clause, total n + k digits

t is 1 for each variable digit, 4 for each clause digit



 = C1  C2  C3  C4, C1 = (x1  x2  x3), C2 = 
(x1  x2  x3), C3 = (x1  x2  x3), and C4 = 
(x1  x2  x3)

Max digit sum is 6, interpret numbers in base  7



Reduction takes p-time: set S has 2n + 2k values of n + k
digits each; each digit takes O(n + k) time to compute

If  has satisfying assignment
Sum of variable digits is 1, matching t

Each clause digit at least 1 since at least 1 literal satisfied

Fill rest with slack variables sj, sj’

If  S’  S that sums to t
Includes either vi or vi’ for each i = 1,…, n; if vi  S’, set xi = 1

Each clause cj has at least one vi or vi’ set to 1 since slacks 
add up to only 3; by above clause is satisfied



Implications of P = NP

Ability to verify a solution  ability to produce one!

Can automate search of solutions, i.e. creativity!

Can use a p-time algorithm for SAT to find formal 
proof of any theorem that has a concise proof, 
because formal proofs can be verified in p-time

 P = NP could very well imply solutions to all the 
other CMI million-dollar problems!



“If P = NP, then the world would be a profoundly different 
place than we usually assume it to be. There would be no 
special value in "creative leaps," no fundamental gap 
between solving a problem and recognizing the solution once 
it's found. Everyone who could appreciate a symphony would 
be Mozart; everyone who could follow a step-by-step 
argument would be Gauss...”

— Scott Aaronson, MIT




