P, NP, and NP-Completeness

Siddhartha Sen Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2nd ed., by CLRS

Tractability

Polynomial time (p-time) = $O(n^k)$, where *n* is the input size and *k* is a constant

Problems solvable in p-time are considered **tractable**

NP-complete problems have no known p-time solution, considered **intractable**

Tractability

Difference between tractability and intractability can be slight

Can find shortest path in graph in O(*m* + *n*lg*n*) time, but finding longest simple path is NP-complete

Can find satisfiable assignment for 2-CNF formula in O(n) time, but for 3-CNF is NP-complete: $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3)$

Outline

Complexity classes P, NP

– Formal-language framework

- NP-completeness

 Hardest problems in NP
- Reductions: $A \le B$

– NP-completeness reductions

Formal-language framework

Alphabet Σ = finite set of symbols

Language L over Σ is any subset of strings in Σ^*

We'll focus on $\Sigma = \{0, 1\}$ L = {10, 11, 101, 111, 1011, ...} is language of primes

Decision problems

- A decision problem has a yes/no answer
- Different, but related to **optimization problem**, where trying to maximize/minimize a value
- Any decision problem Q can be viewed as language: $L = \{x \in \{0,1\}^* : Q(x) = 1\}$
- Q decides L: every string in L accepted by Q, every string not in L rejected

Example of a decision problem

PATH = { $\langle G, u, v, k \rangle$: G = (V, E) is an undirected graph, $u,v \in V, k \ge 0$ is an integer, and \exists a path from u to v in G with $\le k$ edges}

Encoding of input $\langle G, u, v, k \rangle$ is important! We express running times as function of input size

Corresponding optimization problem is SHORTEST-PATH

Complexity class P

P = { $L \subseteq \{0, 1\}^*$: \exists an algorithm A that decides L in p-time}

 $\mathsf{PATH} \in \mathsf{P}$

Polynomial-time verification

Algorithm A verifies language L if

 $L = \{x \in \{0, 1\}^* : \exists y \in \{0, 1\}^* \text{ s.t. } A(x, y) = 1\}$

Can verify PATH given input $\langle G, u, v, k \rangle$ and path from u to v

 $\mathsf{PATH} \in \mathsf{P}\!\!,$ so verifying and deciding take p-time

For some languages, however, verifying much easier than deciding SUBSET-SUM: Given finite set *S* of integers, is there a subset whose sum is exactly *t*?

Complexity class NP

Let *A* be a p-time algorithm and *k* a constant:

NP = { $L \in \{0, 1\}^*$: \exists a certificate y, $|y| = O(|x|^k)$, and an algorithm A s.t. A(x, y) = 1}

 $\mathsf{SUBSET}\text{-}\mathsf{SUM} \in \mathsf{NP}$

P vs. NP

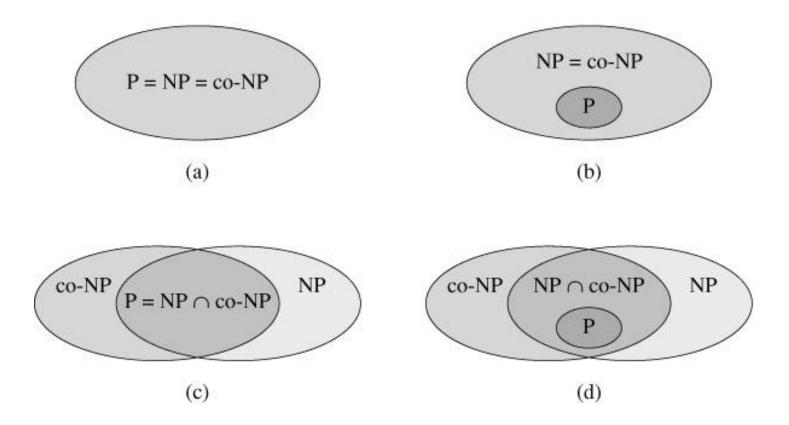
Not much is known, unfortunately

Can think of NP as the ability to appreciate a solution, P as the ability to produce one

 $\mathsf{P} \subseteq \mathsf{N}\mathsf{P}$

Don't even know if NP closed under complement, i.e. NP = co-NP? Does $L \in$ NP imply $\overline{L} \in$ NP?

P vs. NP



Comparing hardness

NP-complete problems are the "hardest" in NP: if any NP-complete problem is p-time solvable, then all problems in NP are p-time solvable

How to formally compare easiness/hardness of problems?

Reductions

Reduce language L_1 to L_2 via function f:

- 1. Convert input x of L_1 to instance f(x) of L_2
- 2. Apply decision algorithm for L_2 to f(x)

Running time = time to compute f + time to apply decision algorithm for L_2

Write as $L_1 \leq L_2$

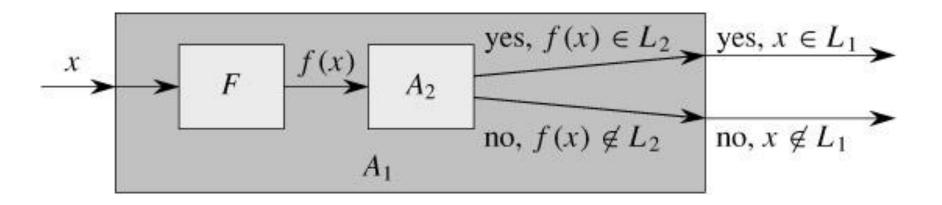
Reductions show easiness/hardness

To show L_1 is easy, reduce it to something we know is easy (e.g., matrix mult., network flow, etc.) $L_1 \le easy$ Use algorithm for easy language to decide L_1

To show L_1 is hard, reduce something we know is hard to it (e.g., NP-complete problem): hard $\leq L_1$ If L_1 was easy, hard would be easy too

Polynomial-time reducibility

L₁ is **p-time reducible** to L₂, or L₁ ≤_p L₂, if ∃ a ptime computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. for all $x \in \{0, 1\}^*$, $x \in L_1$ iff $f(x) \in L_2$



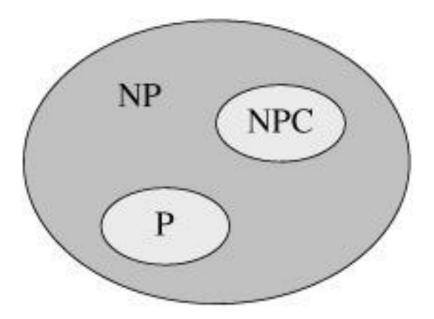
Lemma. If $L_1 \leq_p L_2$ and $L_2 \in P$, then $L_1 \in P$

Complexity class NPC

- A language $L \subseteq \{0, 1\}^*$ is **NP-complete** if:
 - 1. $L \in NP$, and
 - 2. $L' \leq_p L$ for every $L' \in NP$, i.e. L is **NP-hard**
- **Lemma.** If *L* is language s.t. $L' \leq_p L$ where $L' \in NPC$, then *L* is NP-hard. If $L \in NP$, then $L \in NPC$.

Theorem. If any NPC problem is p-time solvable, then P = NP.

P, NP, and NPC



NPC reductions

Lemma. If *L* is language s.t. $L' \leq_p L$ where $L' \in NPC$, then *L* is NP-hard. If $L \in NP$, then $L \in NPC$.

This gives us a recipe for proving any $L \in NPC$:

- 1. Prove $L \in NP$
- 2. Select $L' \in NPC$
- Describe algorithm to compute f mapping every input x of L' to input f(x) of L
- 4. Prove f satisfies $x \in L'$ iff $f(x) \in L$, for all $x \in \{0, 1\}^*$
- 5. Prove computing *f* takes p-time

Bootstrapping

Need one language in NPC to get started

SAT = { $\langle \phi \rangle$: ϕ is a satisfiable boolean formula} Can the variables of ϕ be assigned values in {0, 1} s.t. ϕ evaluates to 1?

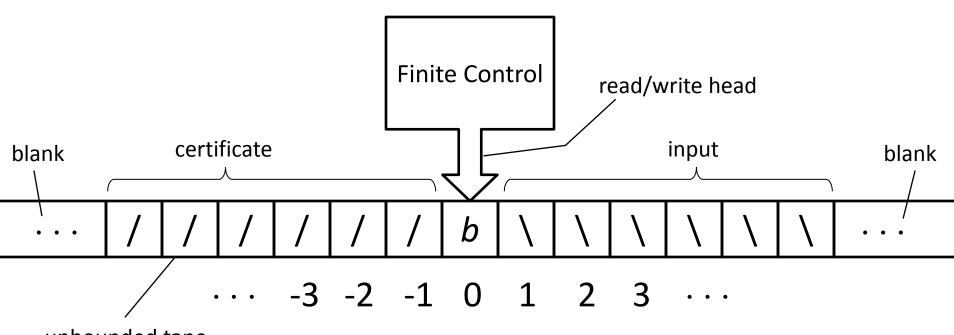
Cook-Levin theorem

Theorem. SAT \in NPC.

Proof. SAT ∈ NP since certificate is satisfying assignment of variables. To show SAT is NP-hard, must show every $L \in$ NP is p-time reducible to it.

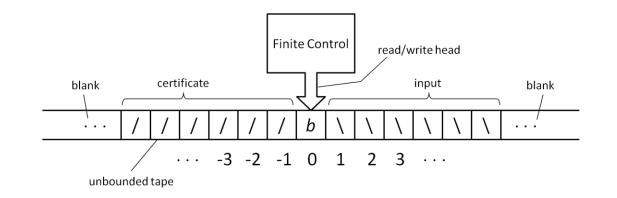
Idea: Use p-time verifier A(x,y) of L to construct input ϕ of SAT s.t. verifier says "yes" iff ϕ satisfiable

Verifier: Turing Machine



unbounded tape

Church-Turing thesis: Everything computable is computable by a Turing machine



In one step, can write a symbol, move head one position, change state

What to do is based on state and symbol read

Fixed # of states: start state, "yes" state, ("no" state); fixed # of tape symbols, including blank

Explicit worst-case p-time bound p(n)

Proof plan

Given $L \in NP$ we have Turing machine that implements verifier A(x,y)

Input x, |x| = n, is "yes" instance iff for some
 certificate y, machine reaches "yes" state within
 p(n) steps from start state
 Loops in "yes" state if gets there earlier

Construct $\phi = f(x)$ that is satisfiable iff this happens x is fixed and used to construct f(x), but y is unspecified

Variables in ϕ

- States: 1,..., w // 1 = start, w = "yes"
- Symbols: 1,..., z // 1 = blank, rest input // symbols like '0' and '1'

Tape cells: -p(n),..., 0,..., p(n)

Time: 0, 1,..., *p*(*n*)

Variables:

 h_{it} : true if head on tape cell *i* at time *t*, - $p(n) \le i \le p(n), 0 \le t \le p(n)$

 s_{jt} : true if state j at time t, $1 \le j \le w$, $0 \le t \le p(n)$

 c_{ikt} : true if tape cell *i* holds symbol *k* at time *t*, - $p(n) \le i \le p(n), 1 \le k \le z, 0 \le t \le p(n)$

What does ϕ need to say?

At most one state, head position, and symbol per cell at each time:

 $\neg h_{it} \lor \neg h_{i't}$, $i \neq i'$, all t

$$\neg s_{jt} \lor \neg s_{j't}, \quad j \neq j', \text{ all } t$$

$$\neg c_{ikt} \lor \neg c_{ik't}, \quad k \neq k', \text{ all } i, \text{ all } t$$

Correct initial state, head position, and tape contents:

$$\begin{array}{l} h_{00} \wedge \mathrm{s}_{10} \wedge \mathrm{c}_{010} \wedge \mathrm{c}_{1k_{1}0} \wedge \mathrm{c}_{2k_{2}0} \wedge \ldots \wedge \mathrm{c}_{nk_{n}0} \wedge \mathrm{c}_{(n+1)10} \\ \dots \wedge \mathrm{c}_{p(n)10} \\ \end{array}$$

Input is k_{1}, \ldots, k_{n} , followed by blanks to right

Correct final state:

 $S_{wp(n)}$

Correct transitions: e.g., if machine in state *j* reads *k*, it then writes *k*', moves head right, and changes to state *j*':

$$s_{jt} \wedge h_{it} \wedge c_{ikt} \Longrightarrow s_{j'(t+1)} \wedge h_{(i+1)(t+1)} \wedge c_{ik'(t+1)}$$
, all i, t

Unread tape cells are unaffected: $h_{it} \wedge c_{i'kt} \Longrightarrow c_{i'k(t+1)}, i \neq i', all k, t$

Wrapping up

Any proof that gives "yes" execution gives satisfying assignment, and vice versa Also ϕ contains $O(p(n)^2)$ variables, $O(p(n)^2)$ clauses

 \Rightarrow SAT \in NPC

Now that we are bootstrapped, much easier to prove other $L \in NPC$

Recall recipe for NPC proofs

- 1. Prove $L \in NP$
- 2. Select $L' \in NPC$
- 3. Describe algorithm to compute *f* mapping every input *x* of *L*' to input *f*(*x*) of *L*
- 4. Prove f satisfies $x \in L'$ iff $f(x) \in L$, for all $x \in \{0, 1\}^*$
- 5. Prove computing *f* takes p-time

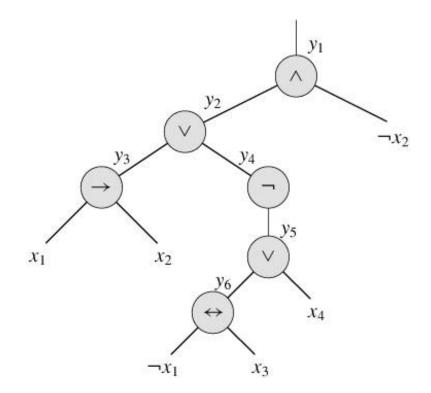
$3\text{-}CNF\text{-}SAT \in NPC$

- 3-CNF-SAT = { $\langle \phi \rangle$: ϕ is a satisfiable 3-CNF boolean formula}
- ϕ is **3-CNF** if it is AND of **clauses**, each of which is OR of three **literals** (variable or negation) $(x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$

Proof. Show SAT \leq_p 3-CNF-SAT

Given input of SAT, construct binary parse tree, introduce variable y_i for each internal node

E.g., $\phi = ((x_1 \Longrightarrow x_2) \land \neg ((\neg x_1 \Leftrightarrow x_3) \lor x_4)) \lor \neg x_2$



Rewrite as AND of root and clauses describing operation of each node:

$$\phi' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2)) \\ \land (y_2 \leftrightarrow (y_3 \lor y_4)) \\ \land (y_3 \leftrightarrow (x_1 \rightarrow x_2)) \\ \land (y_4 \leftrightarrow \neg y_5) \\ \land (y_5 \leftrightarrow (y_6 \lor x_4)) \\ \land (y_6 \leftrightarrow (\neg x_1 \rightarrow x_3))$$

Each clause has at most three literals

Write truth table for each clause, e.g. for $\phi'_1 = (y_1 \Leftrightarrow (y_2 \land \neg x_2))$:

y 1	y 2	<i>x</i> 2	$(y_1 \leftrightarrow (y_2 \land \neg x_2))$			
1	1	1	0			
1	1	0	1			
1	0	1	0			
1	0	0	0			
0	1	1	1			
0	1	0	0			
0	0	1	1			
0	0	0	1			

Write DNF (OR of ANDs) for $\neg \phi'_1$: $\neg \phi'_1 = (y_1 \land y_2 \land x_2) \lor (y_1 \land \neg y_2 \land x_2) \lor \dots$ Use DeMorgan's laws to convert to CNF: $\phi''_1 = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land \dots$ If any clause has < three literals, augment with dummy variables p, q $(I_1 \lor I_2) \Leftrightarrow (I_1 \lor I_2 \lor p) \land (I_1 \lor I_2 \lor \neg p)$

Resulting 3-CNF formula is satisfiable iff original SAT formula is satisfiable

$\mathsf{CLIQUE} \in \mathsf{NPC}$

CLIQUE = { $\langle G, k \rangle$: graph G = (V, E) has clique of size k}

Naïve algorithm runs in $\Omega(k^2 \times |V| C_k)$

Proof. Show 3-CNF-SAT \leq_p CLIQUE

Given formula $\phi = c_1 \wedge c_2 \wedge ... \wedge c_k$, construct input of CLIQUE:

For each $c_r = (I_1^r \vee I_2^r \vee I_3^r)$, place v_1^r , v_2^r , v_3^r in V

Add edge between v_i^r and v_j^s if $r \neq s$ and corresponding literals are consistent

If ϕ is satisfiable, at least one literal in each c_r is $1 \Rightarrow$ set of k vertices that are completely connected

If G has clique of size k, contains exactly one vertex per clause $\Rightarrow \phi$ satisfied by assigning 1 to corresponding literals

$\mathsf{VERTEX}\text{-}\mathsf{COVER} \in \mathsf{NPC}$

VERTEX-COVER = { $\langle G, k \rangle$: graph G = (V, E) has vertex cover of size k}

Vertex cover is $V' \subseteq V$ s.t. if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ or both

Proof. Show CLIQUE \leq_p VERTEX-COVER

Given input $\langle G, k \rangle$ of CLIQUE, construct input of VERTEX-COVER:

$$\langle \overline{G}, |V| - k \rangle$$
, where $\overline{G} = (V, \overline{E})$

If G has clique V',
$$|V'| = k$$
, then $V - V'$ is vertex
cover of \overline{G} :

 $(u, v) \in \overline{E} \Rightarrow$ either u or v not in V', since $(u, v) \notin E$

 \Rightarrow at least one of *u* or *v* in *V* – *V*', so covered

If \overline{G} has vertex cover $V' \subseteq V$, |V'| = |V| - k, then V - V' is clique of G of size k $(u, v) \in \overline{E} \Rightarrow u \in V'$ or $v \in V'$ or both

if $u \notin V'$ and $v \notin V'$, then $(u, v) \notin E$

$\mathsf{SUBSET}\text{-}\mathsf{SUM} \in \mathsf{NPC}$

SUBSET-SUM = { $\langle S, t \rangle$: $S \subset \mathbb{N}, t \in \mathbb{N}$ and \exists a subset $S' \subseteq S$ s.t. $t = \sum_{s \in S'} s$ }

Integers encoded in binary! If *t* encoded in unary, can solve SUBSET-SUM in p-time, i.e. weakly NPC (vs. strongly NPC)

Proof. Show 3-CNF-SAT \leq_p SUBSET-SUM

Given formula ϕ , assume w.l.o.g. each variable appears in at least one clause, and variable and negation don't appear in same clause

Construct input of SUBSET-SUM:

2 numbers per variable x_i , $1 \le i \le n$, indicates if variable or negation is in a clause

2 numbers per clause c_j , $1 \le j \le k$, slack variables

Each digit labeled by variable/clause, total *n* + *k* digits

t is 1 for each variable digit, 4 for each clause digit

 $\phi = C_1 \wedge C_2 \wedge C_3 \wedge C_4, C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), C_2 =$ $(\neg x_1 \lor \neg x_2 \lor \neg x_3), C_3 = (\neg x_1 \lor \neg x_2 \lor x_3), and C_4 =$ $(X_1 \vee X_2 \vee X_3)$

		x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	=	1	0	0	1	0	0	1
v'_1	=	1	0	0	0	1	1	0
v_2	=	0	1	0	0	0	0	1
v_2'	=	0	1	0	1	1	1	0
v_3	=	0	0	1	0	0	1	1
v'_3	=	0	0	1	1	1	0	0
<i>s</i> ₁	=	0	0	0	1	0	0	0
s'_1	=	0	0	0	2	0	0	0
<i>s</i> ₂	=	0	0	0	0	1	0	0
s'_2	=	0	0	0	0	2	0	0
<i>s</i> ₃	=	0	0	0	0	0	1	0
s'_3	=	0	0	0	0	0	2	0
<i>s</i> ₄	=	0	0	0	0	0	0	1
s'_4	=	0	0	0	0	0	0	2
t	=	1	1	1	4	4	4	4

Max digit sum is 6, interpret numbers in base \geq 7

Reduction takes p-time: set S has 2n + 2k values of n + k digits each; each digit takes O(n + k) time to compute

If \u03c6 has satisfying assignment Sum of variable digits is 1, matching t Each clause digit at least 1 since at least 1 literal satisfied

Fill rest with slack variables s_j , s'_j

If $\exists S' \subseteq S$ that sums to *t* Includes either v_i or v'_i for each i = 1, ..., n; if $v_i \in S'$, set $x_i = 1$

Each clause c_j has at least one v_i or v'_i set to 1 since slacks add up to only 3; by above clause is satisfied

Implications of P = NP

Ability to verify a solution \Rightarrow ability to produce one!

Can automate search of solutions, i.e. creativity!

Can use a p-time algorithm for SAT to find formal proof of any theorem that has a concise proof, because formal proofs can be verified in p-time

⇒ P = NP could very well imply solutions to all the other CMI million-dollar problems!

"If P = NP, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative leaps," no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss..."

- Scott Aaronson, MIT