
P, NP, and NP-Completeness

Siddhartha Sen

Questions: sssix@cs.princeton.edu

Some figures obtained from Introduction to Algorithms, 2nd ed., by CLRS

Tractability

Polynomial time (p-time) = O(nk), where n is the
input size and k is a constant

Problems solvable in p-time are considered
tractable

NP-complete problems have no known p-time
solution, considered intractable

Tractability

Difference between tractability and intractability
can be slight

Can find shortest path in graph in O(m + nlgn) time,
but finding longest simple path is NP-complete

Can find satisfiable assignment for 2-CNF formula in
O(n) time, but for 3-CNF is NP-complete:

(x1 x2) (x1 x3) (x2 x3)

Outline

• Complexity classes P, NP

– Formal-language framework

• NP-completeness

– Hardest problems in NP

• Reductions: A B

– NP-completeness reductions

Formal-language framework

Alphabet = finite set of symbols

Language L over is any subset of strings in *

We’ll focus on = {0, 1}

L = {10, 11, 101, 111, 1011, …} is language of primes

Decision problems

A decision problem has a yes/no answer

Different, but related to optimization problem,
where trying to maximize/minimize a value

Any decision problem Q can be viewed as
language: L = {x {0,1}* : Q(x) = 1}

Q decides L: every string in L accepted by Q,
every string not in L rejected

Example of a decision problem

PATH = {G, u, v, k : G = (V, E) is an undirected
graph, u,v ∈ V, k ≥ 0 is an integer, and a path
from u to v in G with k edges}

Encoding of input G, u, v, k is important! We
express running times as function of input size

Corresponding optimization problem is
SHORTEST-PATH

Complexity class P

P = {L {0, 1}* : an algorithm A that
decides L in p-time}

PATH P

Polynomial-time verification

Algorithm A verifies language L if
L = {x {0, 1}* : y {0, 1}* s.t. A(x, y) = 1}

Can verify PATH given input G, u, v, k and path
from u to v

PATH P, so verifying and deciding take p-time

For some languages, however, verifying much easier
than deciding
SUBSET-SUM: Given finite set S of integers, is there a
subset whose sum is exactly t?

Complexity class NP

Let A be a p-time algorithm and k a constant:

NP = {L {0, 1}* : a certificate y, |y| = O(|x|k),
and an algorithm A s.t. A(x, y) = 1}

SUBSET-SUM NP

P vs. NP

Not much is known, unfortunately

Can think of NP as the ability to appreciate a
solution, P as the ability to produce one

P NP

Don’t even know if NP closed under
complement, i.e. NP = co-NP?
Does L NP imply Ḹ NP?

P vs. NP

Comparing hardness

NP-complete problems are the “hardest” in NP:
if any NP-complete problem is p-time solvable,
then all problems in NP are p-time solvable

How to formally compare easiness/hardness of
problems?

Reductions

Reduce language L1 to L2 via function f:

1. Convert input x of L1 to instance f(x) of L2

2. Apply decision algorithm for L2 to f(x)

Running time = time to compute f + time to
apply decision algorithm for L2

Write as L1 L2

Reductions show easiness/hardness

To show L1 is easy, reduce it to something we know
is easy (e.g., matrix mult., network flow, etc.)

L1 easy

Use algorithm for easy language to decide L1

To show L1 is hard, reduce something we know is
hard to it (e.g., NP-complete problem):

hard L1

If L1 was easy, hard would be easy too

Polynomial-time reducibility

L1 is p-time reducible to L2, or L1 p L2, if a p-
time computable function f : {0, 1}* {0, 1}*
s.t. for all x {0, 1}*, x L1 iff f(x) L2

Lemma. If L1 p L2 and L2 P, then L1 P

Complexity class NPC

A language L {0, 1}* is NP-complete if:

1. L NP, and

2. L’ p L for every L’ NP, i.e. L is NP-hard

Lemma. If L is language s.t. L’ p L where L’
NPC, then L is NP-hard. If L NP, then L NPC.

Theorem. If any NPC problem is p-time solvable,
then P = NP.

P, NP, and NPC

NPC reductions

Lemma. If L is language s.t. L’ p L where L’ NPC,
then L is NP-hard. If L NP, then L NPC.

This gives us a recipe for proving any L NPC:
1. Prove L NP

2. Select L’ NPC

3. Describe algorithm to compute f mapping every input
x of L’ to input f(x) of L

4. Prove f satisfies x L’ iff f(x) L, for all x {0, 1}*

5. Prove computing f takes p-time

Bootstrapping

Need one language in NPC to get started

SAT = { : is a satisfiable boolean formula}

Can the variables of be assigned values in {0, 1} s.t.
 evaluates to 1?

Cook-Levin theorem

Theorem. SAT NPC.

Proof. SAT NP since certificate is satisfying
assignment of variables. To show SAT is NP-hard,
must show every L NP is p-time reducible to it.

Idea: Use p-time verifier A(x,y) of L to construct
input of SAT s.t. verifier says “yes” iff satisfiable

Verifier: Turing Machine

Church-Turing thesis: Everything computable is
computable by a Turing machine

/ / / / / / b \ \ \ \ \ \

 -3 -2 -1 0 1 2 3

Finite Control

certificate inputblank blank

read/write head

unbounded tape

In one step, can write a symbol, move head one
position, change state

What to do is based on state and symbol read

Fixed # of states: start state, “yes” state, (“no”
state); fixed # of tape symbols, including blank

Explicit worst-case p-time bound p(n)

Proof plan

Given L NP we have Turing machine that
implements verifier A(x,y)

Input x, |x| = n, is “yes” instance iff for some
certificate y, machine reaches “yes” state within
p(n) steps from start state
Loops in “yes” state if gets there earlier

Construct = f(x) that is satisfiable iff this happens
x is fixed and used to construct f(x), but y is unspecified

Variables in

States: 1,…, w // 1 = start, w = “yes”

Symbols: 1,…, z // 1 = blank, rest input
// symbols like ‘0’ and ‘1’

Tape cells: -p(n),..., 0,…, p(n)

Time: 0, 1,…, p(n)

Variables:

hit: true if head on tape cell i at time t,
p(n) i p(n), 0 t p(n)

sjt: true if state j at time t,
1 j w, 0 t p(n)

cikt: true if tape cell i holds symbol k at time t,
p(n) i p(n), 1 k z, 0 t p(n)

What does need to say?

At most one state, head position, and symbol
per cell at each time:

hit hi’t, i i’, all t

sjt sj’t, j j’, all t

cikt cik’t, k k’, all i, all t

Correct initial state, head position, and tape
contents:

h00 s10 c010 c1k10 c2k20 … cnkn0 c(n+1)10

… cp(n)10

Input is k1,…, kn, followed by blanks to right

Correct final state:

swp(n)

Correct transitions: e.g., if machine in state j
reads k, it then writes k’, moves head right,
and changes to state j’:

sjt hit cikt sj’(t+1) h(i+1)(t+1) cik’(t+1), all i, t

Unread tape cells are unaffected:

hit ci’kt ci’k(t+1), i i’, all k, t

Wrapping up

Any proof that gives “yes” execution gives
satisfying assignment, and vice versa

Also contains O(p(n)2) variables, O(p(n)2) clauses

 SAT NPC

Now that we are bootstrapped, much easier to
prove other L NPC

Recall recipe for NPC proofs

1. Prove L NP

2. Select L’ NPC

3. Describe algorithm to compute f mapping
every input x of L’ to input f(x) of L

4. Prove f satisfies x L’ iff f(x) L, for all x
{0, 1}*

5. Prove computing f takes p-time

3-CNF-SAT NPC

3-CNF-SAT = { : is a satisfiable 3-CNF
boolean formula}

 is 3-CNF if it is AND of clauses, each of which is
OR of three literals (variable or negation)

(x1 x1 x2) (x3 x2 x4) (x1 x3 x4)

Proof. Show SAT p 3-CNF-SAT

Given input of SAT, construct binary parse tree,
introduce variable yi for each internal node

E.g., = ((x1 x2) ((x1 x3) x4)) x2

Rewrite as AND of root and clauses describing
operation of each node:

Each clause has at most three literals

Write truth table for each clause, e.g. for
’1 = (y1 (y2 x2)):

Write DNF (OR of ANDs) for ’1:
’1 = (y1 y2 x2) (y1 y2 x2) …

Use DeMorgan’s laws to convert to CNF:
’’1 = (y1 y2 x2) (y1 y2 x2) …

If any clause has < three literals, augment with
dummy variables p, q

(l1 l2) (l1 l2 p) (l1 l2 p)

Resulting 3-CNF formula is satisfiable iff original
SAT formula is satisfiable

CLIQUE NPC

CLIQUE = {G, k : graph G = (V, E) has clique of
size k}

Naïve algorithm runs in (k2 |V|Ck))

Proof. Show 3-CNF-SAT p CLIQUE

Given formula = c1 c2 … ck, construct input
of CLIQUE:
For each cr = (l1

r l2
r l3

r), place v1
r, v2

r, v3
r in V

Add edge between vi
r and vj

s if r s and corresponding
literals are consistent

If is satisfiable, at least one literal in each cr is 1
set of k vertices that are completely connected

If G has clique of size k, contains exactly one vertex
per clause satisfied by assigning 1 to
corresponding literals

VERTEX-COVER NPC

VERTEX-COVER = {G, k : graph G = (V, E) has
vertex cover of size k}

Vertex cover is V’ V s.t. if (u, v) E, then u
V’ or v V’ or both

Proof. Show CLIQUE p VERTEX-COVER

Given input G, k of CLIQUE, construct input of
VERTEX-COVER:
Ḡ, |V| k, where Ḡ = (V, Ē)

If G has clique V’, |V’| = k, then V V’ is vertex
cover of Ḡ:
(u, v) Ē either u or v not in V’, since (u, v) E

 at least one of u or v in V – V’, so covered

If Ḡ has vertex cover V’ V, |V’| = |V| k, then V –
V’ is clique of G of size k
(u, v) Ē u V’ or v V’ or both

if u V’ and v V’, then (u, v) E

SUBSET-SUM NPC

SUBSET-SUM = {S, t : S N, t N and a
subset S’ ⊆ S s.t. t = sS’ s}

Integers encoded in binary! If t encoded in
unary, can solve SUBSET-SUM in p-time, i.e.
weakly NPC (vs. strongly NPC)

Proof. Show 3-CNF-SAT p SUBSET-SUM

Given formula , assume w.l.o.g. each variable
appears in at least one clause, and variable and
negation don’t appear in same clause

Construct input of SUBSET-SUM:
2 numbers per variable xi, 1 i n, indicates if
variable or negation is in a clause

2 numbers per clause cj, 1 j k, slack variables

Each digit labeled by variable/clause, total n + k digits

t is 1 for each variable digit, 4 for each clause digit

 = C1 C2 C3 C4, C1 = (x1 x2 x3), C2 =
(x1 x2 x3), C3 = (x1 x2 x3), and C4 =
(x1 x2 x3)

Max digit sum is 6, interpret numbers in base 7

Reduction takes p-time: set S has 2n + 2k values of n + k
digits each; each digit takes O(n + k) time to compute

If has satisfying assignment
Sum of variable digits is 1, matching t

Each clause digit at least 1 since at least 1 literal satisfied

Fill rest with slack variables sj, sj’

If S’ S that sums to t
Includes either vi or vi’ for each i = 1,…, n; if vi S’, set xi = 1

Each clause cj has at least one vi or vi’ set to 1 since slacks
add up to only 3; by above clause is satisfied

Implications of P = NP

Ability to verify a solution ability to produce one!

Can automate search of solutions, i.e. creativity!

Can use a p-time algorithm for SAT to find formal
proof of any theorem that has a concise proof,
because formal proofs can be verified in p-time

 P = NP could very well imply solutions to all the
other CMI million-dollar problems!

“If P = NP, then the world would be a profoundly different
place than we usually assume it to be. There would be no
special value in "creative leaps," no fundamental gap
between solving a problem and recognizing the solution once
it's found. Everyone who could appreciate a symphony would
be Mozart; everyone who could follow a step-by-step
argument would be Gauss...”

— Scott Aaronson, MIT

