
Microsoft .NET (v1: ~2002; v4: April 2010)

• a framework for supporting standalone and web-based services
– single run-time environment for programs written in a variety of languages
– web forms for interfaces on web pages
– support for web services
– better security than COM

• development platform
– single intermediate language as target for all languages
– just in time compilation to native instructions
– common type system

all languages produce interoperable objects and types
– common language runtime environment

base class libraries accessible to all languages
– control of deployment and versioning

the end of DLL hell?
– uniform development environment for programs in multiple languages
– significant new language, C#
– major revision of Visual Basic

Why bother / who cares?
• a major focus of Microsoft software development after COM

• interesting comparisons and contrasts with Java

• ties in with other topics of 333
– evolution of C, C++, Java -> C#
– object-oriented programming
– component-based software development
– user interfaces
– web services
– politics and economics of software

Java model
• Java language

– derivative of C and C++
– strictly object-oriented, strongly typed
– garbage collection

• compiled into intermediate language ("byte code")
– result stored in .class files
– packages and JAR files for larger collections

• interpreted by Java Virtual Machine on host
– local services provided by host system
– enormous set of libraries in JRE
– can be compiled into native instructions ahead of time or "just in time"

• largely portable
– types completely specified
– main problems come from making use of services of host environment
– "write once, run anywhere" is mostly true

• applets for running code in web pages
• Java Server Pages (JSP) for server-based web transactions

.NET model
• multiple languages: C#, VB, C++, J#, F#, …

– C# is a derivative of C, C++ and Java
– VB.net is a significantly different version of VB
– "managed extensions" for C++ that permit safe computation, garbage

collection, etc.
• all are object-oriented
• all languages compile into common intermediate language (CIL)

– types completely specified by Common Type System (CTS)
– objects can interoperate if they conform to Common Language

Specification (CLS) [a subset of CTS]

• intermediate language compiled into native machine instructions
– just in time compilation, or compilation in advance: no interpretation
– local services provided by host system (Windows)
– enormous set of libraries

• not portable
– tightly integrated into Windows environment

• web forms for GUI components on web pages
• ASP.NET for server-based web transactions

Common Language Runtime (CLR)
• all languages compile into IL that uses CLR
• common services:

– memory management / garbage collection
– exceptions
– security
– debugging, profiling

• access to underlying operating system
VB

managed code

common language
runtime, JIT

wrappers for existing
OS features

new features like
garbage collection

Windows operating system

C# C++*#

Deployment, versioning
• prior to .NET, installing an application requires

– copying files to multiple directories
– making entries in registry
– adding shortcuts to desktop and menus

• backing up, moving, or removing an application requires an installer
program

• “DLL Hell”
– shared libraries can get out of sync with apps that need them
– new installation can break existing programs that rely on properties of old

DLLs
– fresh installation can overwrite newer DLL with older one

• assemblies provide strong internal naming/typing
– ensure that the right library is being used
– assembly can specify versions of external references that it needs to

work properly
– CLR loads proper one
– can have old and new versions working side by side

Assemblies
• "fundamental unit of deployment, version control, reuse, activation
scoping, and security permissions for a .NET-based application"

VS.NET documentation

• collection of type and resource info
• (usually? always?) packaged as a .exe or .dll

– may contain other files, including .exe and .dll
– executable parts are in CIL, not native code

• each assembly contains a "manifest" with
– name, version of the assembly
– file table: other files in the assembly
– external dependencies

• greatly reduce need for Windows registry
– program and components self-contained
– can often remove an application just by removing the files

C# programming language
• by Anders Hejlsberg (Turbo Pascal, Delphi, ...)
• based on C, C++ and Java

– Microsoft does not stress the Java contribution
– "An evolution of Microsoft C and Microsoft C++" (Visual Studio.NET documentation)

• "C# has a high degree of fidelity to C and C++"
– everything is a class object (Java)

no global functions, variables, constants
– garbage collection; destructors called implicitly (Java)
– arrays are managed types (Java)
– updated primitive types (Java)

char is Unicode character; string is a basic type (Java)
– single inheritance and interfaces (Java)
– ref, out parameter modifiers
– try-catch-finally (Java)
– delegate type (roughly, function pointers)
– unsafe mode (pointers permitted)
– some syntax changes:

‘.’ instead of -> and :: (Java), switches don’t fall through, foreach statement
– no headers or #include (Java)
– /// documentation comments (Java)

• ISO standard in 2003, v4.0 in April 2010

Separated at birth?
public class hello {

public static void main(String[] args)

{

System.out.println("hello, world");

}

}

public class hello {
public static void Main(string[] args)
{

System.Console.out.WriteLine("hello, world");
}

}

“echo” in Java and C#
public class echo {

public static void main(String[] args) {

for (int i = 0; i < args.length; i++)

System.out.println(

"Arg[" + i + "] = [" + args[i] + "]");

}

}

public class echo {
public static void Main(string[] args) {

for (int i = 0; i < args.Length; i++)
System.Console.WriteLine(

"Arg[{0}] = [{1}]", i, args[i]);
}

}

Properties & accessors
• class data members can have get/set members
• external syntax looks like public class variables
• semantics defined by implicitly calling get and set methods

class Thing {
bool _ok; // private data member

public bool ok { // public property
get { return _ok; } // arbitrary computation
set { _ok = value; } // value is reserved word

}
}

Thing v;

if (v.ok) { // calls v's ok get
v.ok = false; // calls v's ok set
...

}

Indexers (get/set [] members)
• syntax looks like array access (v[i])
• semantics defined by calling get and set members with a subscript
• can overload [] with different types

public class Awkarray {
public Hashtable ht = new Hashtable();
public Awk this[string name] {
get {
if (!ht.Contains(name))
ht.Add(name, new Awk());

return (Awk) ht[name];
}
set { ht.Add(name, value); }

}

Awkarray aa = new Awkarray();
if (aa["whatever"] != null)
aa["whatever"] = "a string";

Other C# odds and ends
• operator overloading

– more like C++
– but not =, ->, (), etc.

• a goto statement!
• pointers (for unsafe code)
• structs as a value type

– not everything is an object
• ref, out parameters
• lambda expressions, anonymous types
• generics
• ...

• other .NET languages
– VB, F# (sort of like ML / OCaml)
– PowerShell
– ...

fmt in Java
import java.io.*;
import java.util.*;

public class f {
String line = ""; String space = ""; int maxlen = 60;
public static void main(String args[]) {
f t = new f();
t.runf();

}
public void runf() {
String s;
try {

BufferedReader in = new BufferedReader(new InputStreamReader((Sy
while ((s = in.readLine()) != null) {
String wds[] = s.split("[]+");
for (int i = 0; i < wds.length; i++) addword(wds[i]);

}
} catch (Exception e) {

System.err.println(e); //eof
}
printline();

}
public void addword(String w) {
if (line.length() + w.length() > maxlen) printline();
line += space + w;
space = " ";

}
public void printline() {
if (line.length() > 0) System.out.println(line);
line = space = "";

}

fmt in C#
using System;
using System.IO;

namespace fmtcs {
class fmt {
int maxlen = 60; string line = "";

static void Main(string[] args) {
new fmt(args[0]);

}
fmt(string f) {

string inline;
Stream fin = File.OpenRead(f);
StreamReader sr = new StreamReader(fin);
for (inline = sr.ReadLine(); inline != null; inline = sr.ReadLine
string[] inwords = inline.Split(null);
for (int i = 0; i < inwords.Length; i++)

if (inwords[i] != String.Empty) addword(inwords[i]);
}
printline();

}
void addword(string w) {

if (line.Length + w.Length > maxlen) printline();
if (line.Length > 0) line += " ";
line += w;

}
void printline() {

if (line.Length > 0) {
Console.WriteLine(line);
line = "";

}

fmt in VB.NET
Module Module1

Dim line As String
Sub Main(ByVal args As String())

Dim inline As String, words As String()
Dim i As Integer
line = ""
FileOpen(1, args(0), OpenMode.Input)
While Not EOF(1)

inline = LineInput(1)
words = inline.Split(Nothing)
For i = 0 To words.Length - 1

addword(words(i))
Next i

End While
FileClose(1)
printline()

End Sub
Sub addword(ByVal w As String)

If line.Length + w.Length > 60 Then
printline()

End If
If line.Length > 0 Then

line = line & " "
End If
line = line & w

End Sub
Sub printline()

If line.Length > 0 Then
Console.WriteLine(line)
line = ""

End If
End Sub

End Module

Conclusions
• C#

– easy to pick up basics if know Java
– easy to convert Java statements to C#
– batch mode compilation is easy

• VB.NET
– each new release has made VB more complicated
– wizard helps upgrade process but doesn't handle everything

• Visual Studio.NET
– all languages are handled in a uniform way
– good integration of visual and textual descriptions

• .NET framework
– huge download if not already installed
– not easy to adapt or upgrade most existing programs to .NET

COM not likely to go away in the near future

