
Graphical user interface software
• examples

– HTML, CSS, Javascript (XUL, ...)
– Flash, Silverlight, ...
– X Window system, GTk
– Tcl/Tk, TkInter, ...
– Java Swing, GWT
– Microsoft Visual Studio: C#, VB, ...
– XCode Interface builder, Android XML, ...

• fundamental ideas
– interface components: widgets, controls, objects, …
– properties
– methods
– events: loops and callbacks
– geometry and layout management
– extensive use of hierarchy, inheritance

• the GUI is the biggest chunk of code in many applications
– libraries and components try to make it easier
– development environments and wizards and builders try to make it easier
– interfaces are still hard to get working
– and even harder to make work well

Properties, methods, events (Javascript)

<head>
<script>
function setfocus() { document.srch.q.focus(); }
</script>
</head>
<BODY onload='setfocus();'>
<H1>Basic events on forms</H1>
<form action="http://www.google.com/search" name=srch>
<input type=text size=25 name=q id=q value=""

onmouseover='setfocus()'>
<input type=button value="Google" name=but

onclick='window.location=
"http://www.google.com/search?q="+srch.q.value'>

<input type=button value="Wikipedia" name=but
onclick='window.location=

"http://en.wikipedia.com/wiki/"+srch.q.value'>
<input type=reset onclick='srch.q.value=""; >
</form>

X Windows (Bob Scheifler & Jim Gettys, 1984)

• client-server over a network
– works on single machine too, with IPC

• variants:
– "X terminal" (e.g., SunRay):

server is only thing on server, clients are all remote
– workstation: server is on same processor as clients
– Exceed: server on PC, clients on (usually) Unix

• window manager is just another client, but with more properties
– clients have to let the window manager manage
– permits multiple workspaces / virtual windows / virtual desktops

client client WM client

server

display
mouse
keyboard

network

X Windows model (www.x.org)

• server runs on the local machine
– accepts network (or local) client requests and acts on them
– creates, maps and destroys windows
– writes and draws in windows
– manages keyboard, mouse and display
– sends keyboard and mouse events back to proper clients
– replies to information requests
– reports errors

• client application
– written with X libraries (i.e. Xlib, Xt, GTk, ...)
– uses the X protocol to send requests to the server, and receive replies, events,

errors from server
• protocol messages

– requests: clients make requests to the server
e.g., Create Window, Draw, Iconify, ...

– replies: server answers queries ("how big is this?")
– events: server forwards events to client

typically keyboard or mouse input
– errors: server reports request errors to client

X Windows programming model

• Xlib provides client-server communication
– initial connection of client to server, window creation, window properties,

event mask, ...
– sends client requests to server: draw, get size, ...
– sends server responses, errors, etc., to client
– send events from server, like button push, key press, window expose, ...

• Xt intrinsics provide basic operations for creating and combining
widgets

• widgets implement user interface components
– buttons, labels, dialog boxes, menus, …
– widget set is a group of related widgets with common look and feel, e.g.,

Motif, GTk
• applications and libraries can use all of these layers

Xlib

Xt intrinsics

widgets

application

Events
• client registers with windows system for events it cares about
• events occur asynchronously
• queued for each client
• client has to be ready to handle events any time

– mouse buttons or motion
– keyboard input
– window moved or reshaped or exposed
– 30-40 others

• information comes back to client in a giant union called XEvent,
placed in a queue

• "event loop" processes the queue
Xevent myevent;
for (;;) {

XNextEvent(mydisplay, &myevent);
switch (myevent.type) {
case ButtonPress: …
...

}

Tcl/Tk
• Tcl: tool command language

– scripting language
– extensible by writing C functions

• Tk: (windowing) toolkit
– widget set for graphical interfaces
– (IMHO) the best widget set ever

• created by John Ousterhout
– Berkeley, ~1990
– see www.tcl.tk

• embeddings in other languages
– TkInter in Python
– Perl/Tk
– Ruby
– ...

Tcl example
• name-value addition

while { [gets stdin line] > -1 } {
scan $line "%s %s" name val
if {[info exists tot($name)]} {

incr tot($name) $val
} else {

set tot($name) $val
}

}

foreach i [array names tot] {
puts "[format {%10s %4d} $i $tot($i)]"

}

Tcl example 2: formatter
set space ""; set line ""

proc addword {w} {
global line space
if {[expr [string length $line] + [string length $w]] > 60} {
printline

}
set line "$line$space$w"
set space " "

}

proc printline {} {
global line space
if {[string length $line] > 0} {
puts $line

}
set line ""; set space ""

}

while {[gets stdin in] >= 0} {
if {[string length $in] > 0} {
for {set i 0} {$i < [llength $in]} {incr i} {

addword [lindex $in $i]
}

} else {
printline
puts "\n"

}
}
printline

Hello world in TkInter & Ruby

• Python
from Tkinter import *
root = Tk()
frame = Frame(root)
frame.pack()
button = Button(frame,

text="hello world", command=frame.quit)
button.pack()
root.mainloop()

• Ruby
require 'tk'
root = TkRoot.new { }
TkButton.new(root) do

text "hello world"
command { exit }
pack()

end
Tk.mainloop

Hello world in Java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class helloworld extends JFrame {

public static void main(String[] args) {
helloworld a = new helloworld();

}

helloworld() {
JButton b = new JButton("hello world");
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae){
System.exit(0);

}
});
getContentPane().add(b);
pack();
setVisible(true);

}
}

