
Web [Application] Frameworks
• conventional approach to building a web service

– write ad hoc client code in HTML, CSS, Javascript, ... by hand
– write ad hoc server code in [whatever] by hand
– write ad hoc access to [whatever] database system

• so well understood that it's almost mechanical
• web frameworks mechanize (parts of) this process
• lots of tradeoffs and choices

– what client and server language(s)
– how web pages are generated
– how web events are linked to server actions
– how database access is organized (if at all)

• can be a big win, but not always
– somewhat heavyweight
– easy to lose track of what's going on in multiple layers of generated software
– work well if your application fits their model, less well if it doesn't

• examples:
– Ruby on Rails
– Django
– Google Web Toolkit
– Zend (PHP), ASP.NET (C#, VB.NET), and lots of others [Wikipedia lists over 100]

Google Web Toolkit (GWT) (May 2006)

• write client (browser) code in Java
– widgets, events, layout loosely similar to Swing

• test client code on server side
– test browser, or plugin for testing with real browser on local system

• compile Java to Javascript and HTML/CSS
– [once it works]

• use generated code as normal HTML
– generated code is browser independent (diff versions for diff browsers)

• can use development environments like Eclipse
– can use JUnit for testing

• strong type checking on source
– detect typos, etc., at compile time (unlike Javascript)

• doesn't handle all Java runtime libraries
– currently at Java version 1.5

• no explicit support for database access on server
– use whatever package is available

GWT Widgets

Java startup…
public class StockWatcher implements EntryPoint {
private VerticalPanel mainPanel = new VerticalPanel();
private FlexTable stocksFlexTable = new FlexTable();
private HorizontalPanel addPanel = new HorizontalPanel();
private TextBox newSymbolTextBox = new TextBox();
private Button addStockButton = new Button("Add");
private Label lastUpdatedLabel = new Label();
private ArrayList<String> stocks = new ArrayList<String>();

public void onModuleLoad() {
// Create table for stock data.
stocksFlexTable.setText(0, 0, "Symbol");
stocksFlexTable.setText(0, 1, "Price");
stocksFlexTable.setText(0, 2, "Change");
stocksFlexTable.setText(0, 3, "Remove");

// Assemble Main panel.
mainPanel.add(stocksFlexTable);
mainPanel.add(addPanel);
mainPanel.add(lastUpdatedLabel);

...
// Associate the Main panel with the HTML host page.
RootPanel.get("stockList").add(mainPanel);

Linkage between Java/Javascript and HTML
<html>

<head>

<meta http-equiv="content-type" content="text/html; >

<link type="text/css" rel="stylesheet"

href="StockWatcher.css">

<title>Brian's Portfolio</title>

<script type="text/javascript" language="javascript"

src="stockwatcher/stockwatcher.nocache.js"></script>

</head>

<body>

<h1>Brian's Portfolio</h1>

<div id="stockList"></div>

</body>

</html>

"Same Origin Policy"
• "The same origin policy prevents a document or script loaded

from one origin from getting or setting properties of a document
from another origin. This policy dates all the way back to
Netscape Navigator 2.0." (Mozilla)

• "The SOP states that JavaScript code running on a web page
may not interact with any resource not originating from the
same web site." (Google)

• basically Javascript can only reference information from the
site that provided the original code

• BUT: if a page loads Javascript from more than one site (e.g.,
as with cookies from third-party sites), then that JS code can
interact with that third-party site

GWT assessment
• problem: Javascript is irregular, unsafe, not portable, easily

abused

• solution: use Java, which is type-safe, standard, portable
•
• translate Java to Javascript to either be browser independent

or tailored to specific browser as appropriate
• can take advantage of browser quirks, make compact code,

discourage reverse engineering
• can provide standardized mechanisms for widgets, events,

DOM access, server access, AJAX, RE's and other libraries,
...

• in effect, treat each browser as a somewhat irregular machine
and compile optimized code for it specifically

Django
• by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)

• a collection of Python scripts to

• create a new project / site
– generates Python scripts for settings, etc.
– configuration info stored as Python lists

• creat a new application within a project
– generates scaffolding/framework for models, views

• run a development web server for local testing

• generate a database or build interface to an existing database
• provide a command-line interface to application
• create an administrative interface for the database
• ...

Django Reinhart, 1910-1953

Django web framework
• write client code in HTML, CSS, Javascript, ...

– Django template language helps separate form from content
• write server code in Python

– some of this is generated for you
• write database access with Python library calls

– they are translated to SQL database commands

• URLs on web page map mechanically to Python function calls
– regular expressions specify classes of URLs
– URL received by server is matched against regular expressions
– if a match is found, that identifies function to be called

and arguments to be provided to the function

Conventional approach to building a web site
• user interface, logic, database access are all mixed together

import MySQLdb
print "Content-Type: text/html"
print
print "<html><head><title>Books</title></head>"
print "<body>"
print "<h1>Books</h1>"
print ""
connection = MySQLdb.connect(user='me', passwd='x', db='my_db')
cursor = connection.cursor()
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC")
for row in cursor.fetchall():

print "%s" % row[0]
print ""
print "</body></html>"
connection.close()

Model-View-Controller (MVC) pattern
• an example of a design pattern
• model: the structure of the data

– how data is defined and accessed
• view: the user interface

– what it looks like on the screen
– can have multiple views for one model

• controller: how information is moved around
– processing events, gathering and processing data,

generating HTML, ...
• separate model from view from processing so that when one

changes, the others need not
• used with varying fidelity in

– Django, App Engine, Ruby on Rails, XCode Interface Builder, ...
• not always clear where to draw the lines

– but trying to separate concerns is good

Django approach
• generate framework/skeleton of code by program

models.py (the database tables)

from django.db import models
class Book(models.Model):

name = models.CharField(maxlength=50)
pub_date = models.DateField()

views.py (the business logic)
from django.shortcuts import render_to_response
from models import Book

def latest_books(request):
book_list = Book.objects.order_by('-pub_date')[:10]
return render_to_response('latest_books.html',

{'book_list': book_list})

urls.py (the URL configuration)
from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',
(r'latest/$', views.latest_books),

)

djangobook.com

URL patterns
• regular expressions used to recognize parameters and pass them

to Python functions
• provides linkage between web page and what functions are called

for semantic actions

urlpatterns = patterns('',

(r'^time/$', current_datetime),

(r'^time/plus/(\d{1,2})/$', hours_ahead),

)

• a reference to web page time/ calls the function
current_datetime()

• tagged regular expressions for parameters: url time/plus/12
calls the function

hours_ahead(12)

Templates for generating HTML
• try to separate page design from code that generates it
• Django has a specialized language for including HTML within code

– loosely analogous to PHP mechanism

latest_books.html (the template)

<html><head><title>Books</title></head>
<body>
<h1>Books</h1>

{% for book in book_list %}

{{ book.name }}
{% endfor %}

</body></html>

Administrative interface
• most systems need a way to modify the database even if initially

created from bulk data
– add / remove users, set passwords, ...
– add / remove records
– fix contents of records
– ...

• often requires special code

• Django generates an administrative interface automatically
– loosely equivalent to MyPhpAdmin

urlpatterns = patterns('',

...

Uncomment this for admin:

(r'^admin/', include('django.contrib.admin.urls')),

GWT vs Django
• focusing on different parts of the overall problem

• GWT provides
– reliable, efficient, browser-independent Javascript (from Java)
– extensive widget set
– no help with database access, generating HTML, …

• Django provides
– no Javascript help
– no widgets
– easy database access; template language for generating HTML, …
– easy linkage from URLs on web page to Python functions

• is GWT + App Engine a good combination?

Google App Engine (since 4/08)

• web application development framework
– analogous to Django
– template mechanism looks the same
– YAML for configuration

• supports Python and Java on server side
– and other languages that use the Java Virtual Machine

• Google provides the server
• restrictions on what server-side code can do

– non-relational database based on BigTable
– only static files can be stored on the server, read only access
– no sockets, threads, C-based modules, system calls, …

application: helloworld
version: 1
runtime: python
api_version: 1

handlers:
- url: /.*
script: helloworld.py

print 'Content-Type: text/plain'
print ''
print 'Hello, world!'

Assessment of Web Frameworks
• advantages

– takes care of repetitive parts
more efficient in programmer time

– automatically generated code is
likely to be more reliable, have more uniformity of structure

– "DRY" (don't repeat yourself) is encouraged
– "single point of truth"

information is in only one place so it's easier to change things
– ...

• potential negatives
– automatically generated code

can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

– systems are usually large and could be slow
– ...

• read Joel Spolsky's "Why I hate frameworks"
http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12

Mashups: duct tape programming
• the web version of components?
• the browser as operating system?

(programmableweb.com)

Assessment of Ajax-based systems
• potential advantages

– can be much more responsive (cf Google maps)
– can off-load work from server to client
– code on server is not exposed
– continuous update of services

• potential negatives
– browsers are not standardized
– Javascript code is exposed to client
– Javascript code can be bulky and slow
– asynchronous code can be tricky
– DOM is very awkward
– browser history not maintained without effort

• what next? (changing fast)
– more and better libraries
– better tools and languages for programming
– better standardization?
– will the browser ever replace the OS?

