
Python
• developed ~1991 by Guido van Rossum

– CWI, Amsterdam => ... => Google
• for scripting but very interactive

% python

>>> print "hello, world"

hello, world

>>> print 355.0/113

3.14159292035

>>> import math

>>> print math.pi

3.14159265359

• Disclaimer: I am NOT a Python expert
• see www.python.org

xkcd.com/353

World's most boring example (yet again)

for fahr in range(0, 300, 20):

print "%3d %6.1f" % (fahr, 5.0/9*(fahr-32))

• grouping by indentation
• if elif else; while; for i in list
• constants: numbers, strings

– \ escapes interpreted in '...' and "..." but not in r'...' or r"..."
• variables hold strings or numbers as in Awk

– interpretation determined by operators & context; have to be initialized
• operators:

– arithmetic operators like C but no ++, --, ?: = is not an operator
– string concatenation uses +
– relational operators are the same for string and numeric comparisons
– format with "fmt string" % (list of exprs)

• mostly uses class libraries for operations
– many fewer operators than Perl
– class libraries ("modules") instead, e.g., string, re, sys, os, math, ...

Lists
• list, initialized to empty food = []
• list, initialized with 3 elements

food = ['beer', 'pizza', "coffee"]

• elements accessed as arr[index]
– indices from 0 to len(arr)-1 inclusive
– add new elements with list.append(value) : food.append('coke')
– slicing: list[start:end] is elements start..end-1

• echo command:

for i in range(1, len(sys.argv)):
if i < len(sys.argv):

print argv[i], # suppresses newline
else:

print argv[i]

• tuples are like lists, but are constants
soda = ('coke', 'pepsi')

soda.append('dr pepper') is an error

Dictionaries (== associative arrays)
• dictionaries are a separate type from arrays

– subscripts are arbitrary strings
– elements initialized with dict = {'pizza':200, 'beer':100}
– accessed as dict[str]

• example: add up values from name-value input
pizza 200
beer 100
pizza 500
coke 50

import sys, string, fileinput
val = {} # empty dictionary
line = sys.stdin.readline()
while (line != ""):
(n, v) = line.strip().split()
if val.has_key(n):
val[n] += string.atof(v)

else:
val[n] = string.atof(v)

line = sys.stdin.readline()
for i in val:
print "%s\t%g" % (i, val[i])

AWK version:
{ val[$1] += $2 }

END {
for (i in val)
print i, val[i] }

Regular expressions and substitution
• underlying mechanisms like Perl: libraries, not operators, less syntax

re.search(pat, str) find first match
re.match(pat, str) test for anchored match
re.split(pat, str) split into list of matches
re.findall(pat, str) list of all matches
re.sub(pat, repl, str) replace all pat in str by repl

• shorthands in patterns
\d = digit, \D = non-digit
\w = "word" character [a-zA-Z0-9_], \W = non-word character
\s = whitespace, \S = non-whitespace
\b = word boundary, \B = non-boundary

• substrings
– matched parts are saved for later use in \1, \2, ...
s = re.sub(r'(\S+)\s+(\S+)', r'\2 \1', s) flips 1st 2 words of s

• watch out
– re.match is anchored (match must start at beginning)
– patterns are not matched leftmost longest

Functions
def name(arg, arg, arg):

statements of function

def div(a, b):
''' computes quotient & remainder. b had better be > 0'''
q = a / b
r = a % b
return (q, r) # returns a list

• functions are objects
– can assign them, pass to functions, return from fcns

• parameters are passed call by value
– can have named arguments and default values and arrays of name-value pairs

• variables are local unless declared global

• EXCEPT if you only read a global, it's visible
x = 1; y = 2
def foo(): y=3; print x,y
foo()
1 3

print y
2

Classes and objects
class Stack:

def __init__(self): # constructor
self.stack = [] # local variable

def push(self, obj):
self.stack.append(obj)

def pop(self):
return self.stack.pop() # list.pop

def len(self):
return len(self.stack)

stk = Stack()
stk.push("foo")
if stk.len() != 1: print "error"
if stk.pop() != "foo": print "error"
del stk

• always have to use self in definitions
• special names like __init__ (constructor)
• information hiding only by convention?

Review: Formatter in AWK
/./ { for (i = 1; i <= NF; i++)

addword($i)
}

/^$/ { printline(); print "" }
END { printline() }

function addword(w) {
if (length(line) + length(w) > 60)

printline()
line = line space w
space = " "

}

function printline() {
if (length(line) > 0)

print line
line = space = ""

}

Formatter in Python (version 1)
import sys, string
line=""; space = ""

def main():
buf = sys.stdin.read()
for word in string.split(buf):

addword(word)
printline()

def addword(word):
global line, space
if len(line) + len(word) > 60:

printline()
line = line + space + word
space = " "

def printline():
global line, space
if len(line) > 0:

print line
line = space = ""

main()

Surprises, gotchas, etc.
• indentation for grouping, ":" always needed
• no implicit conversions

– often have to use class name (string.atof(s))
• elif, not else if
• no ++, --, ?:
• assignment is not an expression
• % for string formatting
• global declaration to modify non-local variables in functions
• no uninitialized variables

if v != None:
if arr.has_key():

• regular expressions not leftmost longest
– re.match is anchored, re.sub replaces all

• function call needs parens
– foo is not the same as foo()

What makes Python successful?
• comparatively small, simple but rich language

– regular expressions, strings, tuples, assoc arrays
– clean (though limited) object-oriented mechanism
– reflection, etc.

• efficient enough
– seems to be getting better

• large set of libraries
– extensible by calling C or other languages

• embeddings of major libraries
– e.g., TkInter for GUIs

• open source with large and active user community
• standard: there is only one Python

– but watch out for Python 3000, which is not backwards compatible

• a reaction to the complexity and general ugliness of Perl?

Perl vs. Python
• most tradeoffs in Awk made to keep it small and simple
• most tradeoffs in Perl made to make it powerful and expressive
• most tradeoffs in Python made to make it small and interactive
• domain of applicability

– Perl does system stuff well
– Python is a lot simpler
– Python is more extensible?

• efficiency
– seem close to the same now

• standardization
– there's only one Perl but it evolves
– there's only one Python but it evolves

• program size, installation, environmental assumptions
– both are big, use a big configuration script, take advantage of the

environment
– Python is somewhat smaller

