COS 522 Complexity — Homework 9.

Boaz Barak

Total of 110 points

Exercise 1 (10 points). Prove the Johnson Bound: If C is a code of minimum distance 1/2 - e and $\delta > 10\sqrt{\epsilon}$ then for every string h there are at most $10/\delta^2$ distinct codewords in C of distance at most $1/2 - \delta$ to h. (Hint: think of codewords as vectors in $\{\pm 1\}^n$. Also the proof is in the book, but I prefer if you first try to prove it yourself.)

Exercise 2 (20 points). Do Exercise 19.16 $(Q(x, P(x)) \equiv 0 \text{ iff } P(x) - y \text{ divides } Q(x, y))$

Exercise 3 (40 points). Using the local list decoder for Reed Muller stated in Theorem 19.26, and the Goldreich-Levin Theorem (that you proved in Homework 4), complete the proof of the optimal worst-case to average-case reduction: show that there is a way to transform every function $f: \{0,1\}^n \to \{0,1\}$ in $2^{O(n)}$ time into a function $\hat{f}: \{0,1\}^{O(n)} \to \{0,1\}$ such that if there exists a circuit \hat{C} of size S such that $\Pr_x[\hat{C}(x) = \hat{f}(x)] \ge 1/2 + 1/S$ then there exists a circuit C of size $S^{O(1)}$ that computes f on every input in $\{0,1\}^n$

Exercise 4 (20 points). Do Exercise 20.8 (easy case of IW98)

Exercise 5 (30 points). Do Exercise 20.10 (converse to $NEXP \subseteq P_{/poly} \implies NEXP = MA$)

Exercise 6 (Open question, as far as I know - better than any points :)). Find a simpler proof (maybe without using pseudorandom generators?) for the statement that if $NEXP \subseteq P_{/poly}$ then NEXP = EXP.