COS 522 Complexity — Homework 8.

Benny Applebaum

Total of 140 points

Exercise 1 (10 points). Do Exercise 19.2

Exercise 2 (10 points). Do Exercise 19.8

Exercise 3 (10 points). Do Exercise 19.11

Exercise 4 (20 points). Do Exercise 19.13

Exercise 5 (30 points). Do Exercise 19.14

Exercise 6 (30 points). Do Exercise 19.18

The private information retrieval problem. Suppose that we have k-servers that hold k copies of a database $x \in \{0,1\}^n$ and a user who wants to query the database in some location i. Our goal is to design a randomized protocol that allows the user to learn x_i without letting the servers learn the index i. (The servers cannot talk to each other.) Formally, such a protocol consists of two probabilistic algorithms A, B as follows:

- Given an index *i* the user computes A(i;r) (where *r* is the randomness) which outputs *k* functions (Q_1, \ldots, Q_k) , where $Q_j : \{0, 1\}^n \to \{0, 1\}^m$.
- The user sends Q_i to the *i*-th server and gets $z_i = Q_i(x)$ as an answer.
- The user computes $B(i, r, z_1, \ldots, z_k)$ and output the result.

The protocol should satisfy two properties:

- (Correctness) For every *i* and *x*, $\Pr_r[(B(i, r, Q_1(x), \dots, Q_k(x)) = x_i] \ge 2/3$, where Q_i is the *i*-th output of A(i; r).
- (Privacy) The *j*-th query of A(i; r) does not expose the index *i*. Formally, there exist *k* fixed distributions D_1, \ldots, D_k s.t. for every input *i*, the marginal distribution of the *j*-th query of A(i; r) is D_j .

The communication complexity of the scheme is the number of bits that are sent from the servers to the user, i.e., m.

Exercise 7 (30 points). Let $PIR_k(n)$ be the communication complexity of the best scheme with k servers.

- Prove that $PIR_1 = \Theta(n)$. (That is, prove an upper bound and a lower bound.)
- Prove that $PIR_2 = O(1)$. Hint: Use local decoding.