
Princeton University
COS 217: Introduction to Programming Systems

Spring 2008 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and
required readings. This is a non-exhaustive list of topics that were covered. Topics that
were covered after the midterm exam are in boldface.

1. C programming

The program preparation process
Memory layout: text, stack, heap, rodata, data, bss sections
Data types
Variable declarations and definitions
Variable scope, linkage, and duration/extent
Variables vs. values
Operators
Statements
Function declarations and definitions
Pointers
Call-by-value and call-by-reference
Arrays
Strings
Command-line arguments
Constants: #define, enumerations, the "const" keyword
Input/output functions
Text files
Structures
Dynamic memory management: malloc(), calloc(), realloc(), free()
Void pointers
Function pointers and function callbacks
Macros and their dangers (see King Section 14.3)
The assert() macro
Bitwise operators
Unions
The fwrite() and fread() functions

2. Programming style

Modularity, interfaces, implementations
Design by contract
Multi-file programs using header files
Protecting header files against accidental multiple inclusion
Opaque pointers
Stateless modules
Abstract objects

Page 1 of 4

Abstract data types
Memory "ownership"
Checking invariants
Testing
Profiling and instrumentation
Performance tuning

3. Representations

The binary, octal, and hexadecimal number systems
Signed vs. unsigned integers
Binary arithmetic
Signed-magnitude, one's complement, and two's complement representation of
negative integers

4. IA-32 architecture and assembly language

General computer architecture
The Von Neumann architecture
Control unit vs. ALU
The memory hierarchy: registers vs. cache vs. memory vs. disk
Instruction pipelining
Little-endian vs. big-endian byte order
CISC vs. RISC
Language levels: high-level vs. assembly vs. machine

Assembly language
Directives (.section, .asciz, .long, etc.)
Mnemonics (movl, addl, call, etc.)
Instruction operands: immediate, register, memory
Memory addressing modes
The stack and local variables
The stack and function calls

The C function call convention
Machine language

Opcodes
The ModR/M byte
Immediate, register, memory, displacement operands

Assemblers
The forward reference problem
Pass 1: Create symbol table
Pass 2: Use symbol table to generate data section, rodata section, bss
section, text section, relocation records

Linkers
Resolution: Fetch library code
Relocation: Use relocation records and symbol table to patch code

Page 2 of 4

5. Operating systems
Services provided
Processes

The process lifecycle
Context switches
Virtual memory

Computer security
Buffer overrun attacks

UNIX processes
System calls: getpid(), execvp(), fork(), wait(), system()

UNIX I/O
The stream abstraction
System calls: open(), creat(), close(), read(), write(), dup(), dup2()
Buffering

UNIX inter-process communication
Pipes
Sockets
System calls: pipe(), close(), dup(), dup2()

UNIX Signals
Sending signals

Via keystrokes
Via the kill command
Via the raise() and kill() functions

Installing signal handler functions
The signal() and sigaction() functions

Ignoring signals
Race conditions
Blocking signals

The sigprocmask() function
UNIX alarms and timers

The alarm() function
The setitimer() function

6. Applications

De-commenting
Lexical analysis via finite state automata
String manipulation
Symbol tables, linked lists, hash tables
Dynamically expanding arrays
XOR encryption
Dynamic memory management

Optimizing free()
Optimizing malloc()

Shells

7. Tools: The UNIX/GNU programming environment

UNIX, bash, xemacs, gcc, gdb, gdb for assembly language, make, gprof

Page 3 of 4

Readings

As specified by the course "Schedule" Web page. Readings that were assigned after the
midterm exam are in boldface.

Required:

• C Programming (King): 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19.1-3,20

Alternate: The C Programming Language (Kernighan & Ritchie):
1,2,3,4,5,6,7,B1,B2,B3,B4,B5,B6,B11

• The C Programming Language (Kernighan & Ritchie): 8.7
• The Practice of Programming (Kernighan & Pike): 1,2,4,5,6,7,8
• Programming from the Ground Up (Bartlett): 1,2,3,4,9,10,B,E,F

Alternate: Computer Systems (Bryant & O'Hallaron): 2,3
• Communications of the ACM "Detection and Prevention of Stack Buffer

Overflow Attacks"
• The UNIX Programming Environment (Kernighan & Pike): 7.4,7.5

Recommended:

• C Programming (King): 19.4
• Programming from the Ground Up (Bartlett): 5,6,7,8,11,12,13,C

Alternate: Computer Systems (Bryant & O'Hallaron): 1,5,7
• Programming with GNU Software (Loukides & Oram): 1,2,3,4,6,7,9
• The C Programming Language (Kernighan & Ritchie): 8.1,8.2,8.3,B9

Recommended, for reference only:

• Using as, the GNU Assembler
• IA32 Intel Architecture Software Developer's Manual: Volume 1: Basic

Architecture
• IA32 Intel Architecture Software Developer's Manual: Volume 2: Instruction

Set Reference
• IA32 Intel Architecture Software Developer's Manual: Volume 3: System

Programming Guide
• Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification

There is no need to bring the reference manuals to the exam.

Copyright © 2008 by Robert M. Dondero, Jr.

Page 4 of 4

	Variable declarations and definitions

