
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #20
Scribe: Atoshi Chowdhury 25 April 2006

1 Log loss in online learning: motivation

Last time, we began discussing the following model of online learning, in which the goal
was to minimize the log loss:

Let X be the space of possible outcomes in any time step, and suppose we have N

experts to consult. During each time step t = 1, ..., T ,

• each expert i provides a predicted distribution pt,i over X;

• the master algorithm combines the distributions pt,i into a distribution qt over X;

• we observe the realization of an event xt ∈ X;

• we suffer a loss recorded as − ln qt(xt).

We motivated this model using the example of a horse race, in which each expert’s
prediction gives the probability that each horse will win. Another motivation comes from
coding theory: the problem of universal compression. Suppose we want to encode a file
consisting of characters xt (where t = 1, ..., T ) taken from the space X of all possible
characters, and we have N compression programs (‘experts’) which we’d like to combine
into a compression algorithm that is as nearly optimal as possible for our file. Note that
this motivation is natural because we don’t want to make any statistical assumptions about
the characters xt in the file; they are completely arbitrary.

As we’ve discussed before, if p(x) is the probability of choosing x from X, then the
optimal number of bits to use is − lg p(x). So we can let the ith compression program
encode xt using − lg pt,i(xt) bits, and have the master combine this information to encode
xt in − lg qt(xt) bits.

The total length of the file after compression by the master is −
∑

t lg qt(xt); the total
length after compression by the ith expert is −

∑

t lg pt,i(xt). Our problem is to construct
qt so that the former length is at most the length after compression by the best compression
program, plus some small amount (i.e., so that the loss of the master is at most the loss of
the best expert): we want qt to satisfy

−
∑

t

lg qt(xt) ≤ min
i

(

−
∑

t

lg pt,i(xt)

)

+ [small amount].

Up to a constant factor, this is the same problem we were trying to solve in the example of
the horse race.

2 Bayes’ algorithm

Although we don’t make any statistical assumptions on the xt, in order to derive the al-
gorithm constructing qt we’ll pretend the xt are generated by a random process (to be



described below). (We can do this because while the relevant data are not actually random,
they have the properties that allow us to perform probabilistic calculations on them.) To
that end, we introduce the following suggestive notation: write pt,i(xt) = pi(xt | xt−1

1 ) and
qt(xt) = q(xt | xt−1

1 ), where xt−1
1 denotes the sequence x1, ..., xt−1. This lets us think of

pt,i(xt) and qt(xt) as the probability of the event xt conditional upon the occurrence of the
events x1, ..., xt−1.

Now, we pretend the xt are generated as follows. First, one expert i∗ is chosen uniformly
at random from among all the experts: Pr[i∗ = i] = 1

N
. Then the sequence x1, ..., xT is

generated according to pi∗ :

Pr[xt|x
t−1
1 , i∗ = i] = pi(xt | xt−1

1 ).

To construct qt, we simply let qt(xt) = Pr[xt | xt−1
1 ]. This quantity can be computed by

marginalization:

Pr[xt | xt−1
1 ] =

∑

i

Pr[i∗ = i | xt−1
1 ] Pr[xt | i∗ = i, xt−1

1 ] =
∑

i

Pr[i∗ = i | xt−1
1 ]pi(xt | xt−1

1 ).

(1)
By Bayes’ rule,

Pr[i∗ = i | xt−1
1 ] =

Pr[xt−1
1 | i∗ = i] Pr[i∗ = i]

Pr[xt−1
1 ]

=
1
N

Pr[xt−1
1 | i∗ = i]

Pr[xt−1
1 ]

=
1
N

∏t−1
t′=1 Pr[xt′ | i∗ = i, xt′−1

1 ]

Pr[xt−1
1 ]

=
1
N

∏t−1
t′=1 pi(xt′ | xt′−1

1 )

Pr[xt−1
1 ]

.

Let wt,i =
t−1
∏

t′=1

pi(xt′ | xt′−1
1 ); then

Pr[i∗ = i | xt−1
1 ] =

1

N

wt,i

Pr[xt−1
1 ]

,

and

Pr[xt−1
1 ] =

∑

i

Pr[xt−1
1 | i∗ = i] Pr[i∗ = i]

=
1

N

∑

i

t−1
∏

t′=1

Pr[xt′ | xt′−1
1 , i∗ = i]

=
1

N

∑

i

t−1
∏

t′=1

pi(xt′ |x
t′−1
1 )

=
1

N

∑

i

wt,i.

2



Substituting these expressions in equation 1 yields

qt(xt) =

∑

i wt,ipi(xt | xt−1
1 )

∑

i wt,i

. (2)

This construction is known as Bayes’ algorithm. From a probabilistic point of view,
it carries the following terminology: Pr[i∗ = i] is called the prior, Pr[i∗ = i | xt−1

1 ] is the
posterior, and Pr[xt−1

1 | i∗ = i] is the likelihood.
If we view Bayes’ algorithm as an algorithm for updating the weights wt,i of the N

experts (before taking a weighted average of their predictions at each time step), the update
rule for the weights is wt+1,i = wt,ipi(xt | xt−1

1 ).
How does Bayes’ algorithm compare to the algorithm we used in the original scenario of

learning with expert advice? There, the update rule for the weights was wt+1,i = wt,iβ
loss(i),

where β was a constant and loss(i) was 1 if expert i had made a mistake and 0 otherwise.
In the log loss model, we have loss(i) = − ln pi(xt | xt−1

1 ); taking β = e−1 yields the same
update rule. So Bayes’ algorithm in fact has the same form as the earlier algorithm.

3 Analysis of Bayes’ algorithm

To prove that Bayes’ algorithm yields an effective learner, we first extend the analogy to
conditional probability by defining

pi(x
t
1) = Pr[xt

1 | i∗ = i] =

t
∏

t′=1

pi(xt′ | xt′−1
1 ),

q(xt
1) = Pr[xt

1] =

t
∏

t′=1

q(xt′ | xt′−1
1 ).

Now the cumulative log loss of the master algorithm can be written

−

T
∑

t=1

ln qt(xt) = −

T
∑

t=1

ln q(xt | xt−1
1 ) = − ln

T
∏

t=1

q(xt | xt−1
1 ) = − ln q(xT

1 ).

Similarly, expert i’s cumulative log loss is

−

T
∑

t=1

ln pt,i(xt) = −

T
∑

t=1

ln pi(xt | xt−1
1 ) = − ln

T
∏

t=1

pi(xt | xt−1
1 ) = − ln pi(x

T
1 ).

To bound the master’s cumulative log loss, note that for any i,

q(xT
1 ) = Pr[xT

1 ]

=
N
∑

i=1

Pr[i∗ = i] Pr[xT
1 | i∗ = i]

=
1

N

N
∑

i=1

Pr[xT
1 | i∗ = i]

=
1

N

N
∑

i=1

pi(x
T
1 )

≥
1

N
pi(x

T
1 ),

3



since each pi(x
T
1 ) is nonnegative. Hence

− ln q(xT
1 ) ≤ − ln pi(x

T
1 ) + ln N .

In particular,
− ln q(xT

1 ) ≤ min
i

(

− ln pi(x
T
1 )
)

+ ln N ,

or equivalently,

−
∑

t

ln qt(xt) ≤ min
i

(

−
∑

t

ln pt,i(xt)

)

+ ln N ,

which shows that the master does no worse than the best expert plus ln N .
(In the context of universal compression, we could achieve the same bound by using lg N

bits to say which expert is best, then encode the file in the same way as the best expert.
But Bayes’ algorithm gives us an effective way to do this with all coding occurring online.)

We can also set up this algorithm choosing Pr[i∗ = i] = πi where the πi’s form a given
prior probability distribution over the experts. In this case, by a direct generalization of
the argument above, the bound on the loss of the master will be

−
∑

t

ln qt(xt) ≤ min
i

(

−
∑

t

ln pt,i(xt) − ln πi

)

.

4 Example: a continuum of experts

Let X = {0, 1}, and suppose we have a continuum [0, 1] of experts: for each p ∈ [0, 1], there
is an expert p that predicts Pr[1] = p, Pr[0] = 1−p at every time step. Then we can apply a
continuous analogue of Bayes’ algorithm, with the sums replaced by integrals. Suppose that
h of the first t bits observed were 1; then for each expert p, we have wt+1,p = ph(1 − p)t−h,
so the continuous version of equation (2) gives us

qt+1(1) =

∫ 1
0 ph(1 − p)t−h · p dp
∫ 1
0 ph(1 − p)t−h dp

=
h + 1

t + 2
.

Note that this is not the probability we would assign to the outcome 1 based on näıve
counting (that would be h

t
); instead, it’s what we would get by applying Laplace smoothing.

4


