
COS 511: Foundations of Machine Learning

Rob Schapire Lecture #8
Scribe: David Weiss March 2, 2006

1 A More General Set of Tools

In the previous lecture, we introduced a generalized form of the PAC learning model that
allows for the possibility that we are not able or do not wish to find a consistent hypothesis
during learning. Before we delve further into analysis of this model, we will first develop a
set of general tools that allow us to describe more precisely the convergence of a random
variable to its expectation.

1.1 Abstract Case & Hoeffding’s Inequality

Given a set of i.i.d random variables X1, . . . ,Xm, where Xi is always bounded (Xi ∈ [0, 1])
and all Xi are drawn from the same distribution, let p = E[Xi] be the common expectation
of all Xi. Now, we define the empirical average p̂ as follows:

p̂ =
1

m

∑

Xi.

Thus, in the development of our general techniques, we wish to answer the question: how

quickly does p̂→ p?
As it turns out, an easy first stab at an answer to this question is given by the theorem

we discussed in the last class, Hoeffding’s Inequality:

Hoeffding’s Inequality. Assume random variables X1, . . . ,Xm are i.i.d. Let

p = E[Xi], Xi ∈ [0, 1], p̂ =
1

m

∑

Xi, ε ≥ 0

Then

Pr[|p̂− p| ≥ ε] ≤ 2e−2ε2m.

From this inequality we can see that p̂ converges to p exponentially fast in our sample
size, m.

Intuitively, we can imagine a graph of the r.v. p̂ and consider the areas of the distribution
where |p̂−p| ≥ ε; we can then interpret Hoeffding’s inequality as a bound on the probability
that p̂ occurs within these regions on the outskirts of the distribution. Thus, Hoeffding’s
inequality is also referred to as a tail bound or a concentration inequality of the distribution
over p̂.

However, as we shall see in the next section, we can prove a stronger, more powerful,
yet less well-known result, of which Hoeffding’s Inequality is a special case.

1.2 Relative Entropy

In this section, we will prove the following stronger bound on the convergence of a random
variable to its expectation. Bounds of this general form, including Hoeffding’s inequality,
are generically known as Chernoff Bounds.

Theorem 1.2.1. Assume random variables X1, . . . ,Xm are i.i.d. Let

p = E[Xi], Xi ∈ [0, 1], p̂ =
1

m

∑

Xi, ε ≥ 0.

Then

Pr[p̂ ≥ p + ε] ≤ e−RE(p+ε || p)m

Pr[p̂ ≤ p− ε] ≤ e−RE(p−ε || p)m

where RE(p + ε ||p) is defined as the relative entropy between p + ε and p.

Relative Entropy is a means of measuring the distance between two distributions from
an information theory perspective. In other circles, it is also known as Kullbach-Liebler

Divergence or I-divergence. However, it is an extremely prevalent and useful concept, so we
will now take a detour into information theory to define and understand exactly what it is
we are trying to prove.

1.2.1 Entropy

In information theory, a common setup is as follows. One subject, Alice, wishes to send a
message across a wire or channel to a recipient, Bob.

A
channel−−−−−→ B

Alice can only send one bit at a time, but she wishes to send one of N possible messages

to Bob without error: say, the 26 letters of the alphabet. We must therefore assign each
letter a unique binary representation. A naive implementation (Figure 1) would be to see
that bit strings of length 5 will provide enough unique representations to code each letter
uniquely:

letter encoding

a 00000
b 00001
...

...
z 01110

Figure 1: A naive, inefficient encoding of the alphabet.

The problem with the naive encoding of the alphabet is that it is terribly inefficient:
we know that the message e is likely to appear many more times than the message z, so
we can reduce the expected message length by using fewer than 5 bits to encode e and (if
necessary) more than 5 bits to encode z (Figure 2).

In general, if P (x) = probability of sending message x, then it can be shown that the
optimal number of bits to encode message x is given by

optimal # of bits = lg
1

P (x)
.

Thus the expected number of bits to encode any message, called the entropy of the distri-
bution over messages P , is given by

E[message length] =
∑

x

P (x) lg
1

P (x)
← “entropy”

2

letter encoding

a 01
b 0010
...

...
z 11111

Figure 2: A more efficient encoding of the alphabet.

From this definition, we can see that the entropy will be largest as P approaches the uniform
distribution. (By convention, 0 lg 0 is defined to be 0.)

Suppose now that we don’t actually know P , and instead have a “mistaken” belief that
P (X) = Q(X), where Q(X) is the believed P . Instead of assigning our messages lg 1/P (X)
bits, we are going to assign lg 1/Q(X) bits, which can only be less efficient than an encoding
according to P . Our new expected message length will be

E[message length] =
∑

x

P (X) lg
1

Q(X)
≥ entropy(P).

To get an idea of how much our poor estimate Q is hurting us, we look at the difference

between the entropy of P and the expected message length according to Q:

∑

x

P (X) lg
1

Q(X)
−
∑

x

P (X) lg
1

P (X)
=

∑

x

P (X) lg
P (X)

Q(X)
(1)

= RE(P ||Q)

where RE(P ||Q) denotes the relative entropy between distributions P and Q. This will be
our measure of the “distance” between two distributions. Note that this value is always
positive, since the expected message length using P is always less than the expected message
length using Q. Also note that although information theorists use lg as a standard logarithm,
we will use for convenience ln that is simply off by a constant factor.

As a final note, we introduce a shorthand so that we may write RE(p||q) even though p
and q are fixed scalars and not probability distributions. Implicitly, we will take RE(p||q)
to refer to the distributions P and Q defined by two events with probabilities (p, 1− p) and
(q, 1− q). Thus, equation (1) above becomes

RE(p||q) = RE ((p, 1− p) || (q, 1− q)) = p

(

ln
p

q

)

+ (1− p)

(

ln
1− p

1− q

)

which we abbreviate using the shorthand on the leftmost side of the equation. This allows
us to write in Theorem 1.2.1 the construct RE(p + ε||p) with clarity.

1.2.2 A False Start Proof of RE Theorem

Now that we have defined all of our terms, we shall prove Theorem 1.2.1. To recap, we aim
to derive the following inequality:

Pr[p̂ ≥ p + ε] ≤ e−RE(p+ε||p)m. (2)

3

One simple approach to this problem is to apply the Markov Inequality and use the fact
that E[p̂] = p. The Markov Inequality states, for any r.v. X,

Pr[X ≥ δ] ≤ E[X]

δ
.

We can then rewrite (2):

Pr[p̂ ≥ p + ε] ≤ E[p̂]

p + ε
=

p

p + ε

And we have hit a dead end. Unfortunately, this weak bound is useless; has the Markov
Inequality forsaken us? Thankfully, it has not. We can use a “monotonic trick” to allow us
to use the Markov inequality to produce better results.

1.2.3 A Real Proof of RE Theorem

Proof. Let q = p + ε and choose an arbitrary λ > 0. Now,

Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq]

where m is the number of sample points in the definition of p̂. Note that this step is valid
because eλmx is a monotonically increasing function of x. Now, if we apply Markov, we get

Pr[p̂ ≥ q] ≤ E[eλmp̂]

eλmq
= e−λmqE[eλmp̂]. (3)

Then

E[eλmp̂] = E

[

exp

(

λm(1/m)
∑

i

Xi

)]

= E

[

exp

(

λ
∑

i

Xi

)]

= E

[

∏

i

exp (λXi)

]

=
∏

i

E[eλXi]

because all Xi are independent. At this point, we know that Xi ∈ [0, 1], so we can define a
line y(x) = (1 − x) + xeλ such that y(x) ≥ eλx for x ∈ [0, 1]. Thus we can rewrite the last
equation as an inequality, and then use linearity of expectation to simplify since y(x) is a
linear function of x:

E[eλmp̂] ≤
∏

i

E
[

(1−Xi) + Xie
λ
]

=
∏

i

[

(1− p) + peλ
]

= (1− p + peλ)m

where the last steps use linearity of expectation and the fact that E[Xi] = p. Finally, we
can substitute the previous equation back into (3):

Pr[p̂ ≥ q] ≤ e−λmq(1− p + peλ)m

≤
[

e−λq
(

1− p + peλ
)]m

. (4)

4

We now have an exponential bound on Pr[p̂ ≥ q], but it depends on an arbitrary λ > 0. If
we let

φ(λ) = ln
[

e−λq(1− p + peλ)
]

then we can solve for the maximum of φ(λ) by setting dφ(λ)
dλ

= 0 and solving for λ. In this
case, the solution is given by

λ = ln

(

q(1− p)

p(q − 1)

)

, φ(λ) = −RE(q || p).

Finally, we conclude:
Pr[p̂ ≥ q] ≤ eφ(λ)m = e−RE(q || p)m

And we have proved the first half of Theorem 1.2.1. To prove the latter half, we simply
substitute Xi with a new r.v. 1−Xi and plug it into the first bound.

What do we make of this new theorem? First of all, Hoeffding’s inequality now follows
from the fact that RE(p + ε||p) ≥ 2ε2 for all p and ε. It can be shown that, as p goes
towards either 0 or 1 (away from 1/2), RE(p + ε||p)→ ε, rather than the ε2 growth factor
derived from Hoeffding’s Theorem. Also, keep in mind once again that although these are
general probabilistic techniques, we will ultimately be applying them to our inconsistent
PAC learning model.

1.3 McDiarmid’s Inequality

Although we don’t have time to prove it, McDiarmid’s inequality provides a very useful
generalization of Hoeffding’s Inequality.

McDiarmid’s Inequality. Let X1, . . . ,Xm be independent but not necessarily identically

distributed random variables. Let f(x1, . . . , xm) be a function such that if we change only

one of the parameters xi to a new value x′
i, then the function changes by at most ci:

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci ∀x1, . . . , xm, x′

i

Then

Pr [f(X1, . . . ,Xm) ≥ E[f(X1, . . . ,Xm)] + ε] ≤ exp

(

−2ε2

∑

i c
2
i

)

.

As a special case, we can use McDiarmid’s Inequality to derive a proof of Hoeffding’s
Inequality in a quick manner:

Proof. Let us define p̂ such that

p̂ =
1

m

m
∑

i=1

Xi = f(X1, . . . ,Xm)

Because Xi ∈ [0, 1], the most that Xi can be changed is from 0 to 1, and the maximum
change in f is bounded by ci = 1/m. Thus p̂ satisfies the requirements for f in Theorem

5

1.3. Now, we simply apply the theorem:

Pr[f ≥ E[f] + ε] ≤ exp

(

−2ε2

∑m
i=1 c2

i

)

Pr[p̂ ≥ p + ε] ≤ exp

(

−2ε2

m(1/m)2

)

= exp

(

−2ε2

1/m

)

= e−2ε2m

2 Back to PAC

In the previous class, we showed that if we could prove that ∀h ∈ H,

|err(h)− ˆerr(h)| ≤ ε

then learning will be possible in our inconsistent PAC model. At this point, however, we
have all the tools we need to prove this result.

Theorem 2.1. Given m examples and a finite hypothesis space H, then, with probability

1− δ, if

m = O

(

ln |H|+ ln(1/δ)

ε2

)

then

∀h ∈ H : |err(h)− ˆerr(h)| ≤ ε.

Proof. Fix h ∈ H. Now we define Xi such that

Xi =

{

1 if h is correct on example i
0 otherwise.

Furthermore, E[Xi] = err(h), the probability of making an incorrect guess, and ˆerr(h) =
1
m

∑

Xi is the empirical error. We now apply Hoeffding’s Inequality:

Pr [| ˆerr(h)− err(h)| > ε] ≤ e−2ε2m. (5)

Since (5) is true for any fixed h, we can use the Union Bound to bound the probably of any

h:
Pr [∃h ∈ H : | ˆerr(h)− err(h)| > ε] ≤ 2|H|e−2ε2m = δ

Setting this result equal to δ and solving for m, we then have

m = O

(

ln |H|+ ln(1/δ)

ε2

)

6

2.1 Important Implications of New Bounds

We discover an important difference between our new result and the result for a purely
consistent h when we solve for the error ε:

|err(h)− ˆerr(h)| ≤
√

ln 2|H|+ ln(1/δ)

2m

which implies

err(h) ≤ ˆerr(h) +

√

ln 2|H|+ ln(1/δ)

2m
.

Ignoring all other parameters besides the size of the sample m, we find that whereas our
error was previously bounded roughly by 1/m, we are now bounded only by 1/

√
m - this is

quite a significant factor. Intuitively, to perform twice as well, we previously needed twice
as many examples, but we now need four times as many examples!

Our new weakness in the bound derives from the ε2 term in Hoeffding’s inequality.
As was hinted at earlier, the problem is that Hoeffding’s inequality becomes weaker as p
approaches the extremities of 0 and 1, since one would expect less “fluctuations” in the
value of p̂ in these cases. This was our justification to use the stronger RE bounds.

However, there is another significant intuitive result to be gained from our bound on h
in the inconsistent PAC model: our true error err(h) is dependent on both the empirical
error ˆerr(h) as well as the O(

√

(|h| + ln(1/δ))/m) term. Once again, we have a trade-off
between hypothesis complexity and the true error of our hypothesis, but this time we are
only able to measure and train our hypothesis on the empirical term ˆerr(h). When |h|
is very small, err(h) will be dominated by ˆerr(h), but at some point when |h| increases
greatly the O term will dominate and cause true error err(h) to increase, even if ˆerr(h) is
decreasing during training!

This fundamental trade-off in theory describes a very real phenomenon in the practice
of machine learning called overfitting. Overfitting is demonstrated with real-world data
in Figure 3. As the complexity of the hypotheses increases, the probability of finding a
consistent hypothesis increases and so ˆerr(h) approaches 0. However, at some point, the O
term begins to dominate and err(h) reaches a minimum after which it begins to rise again.

Practically, overfitting is a difficult problem because in many cases only ˆerr(h) can be
observed directly. There are historically at least three main approaches to solving this
problem that are common in machine learning:

• “Structural Risk Minimization” - this solution attempts to figure out the exact value
of the theoretical bounds so that error can be minimized directly. However, although
theory predicts the existence of the bound, due to a prevalence of unknown constants
the O term must be estimated empirically, which is prone to a multitude of inaccuracies
and difficulties.

• “Cross-Validation” - this solution involves separating a segment of the training data
for the algorithm to be used as a “test” sample; especially if multiple subsets of the
data are used as both testing and training data, a fairly effective estimate of err(h)
in addition to ˆerr(h) can be found. However, cross-validation requires many training
examples and is often demanding on time, data, and computational resources.

• New Algorithms - this approach does not involve a specific solution, but generally
seeks to find algorithms that can learn hypotheses that are robust and less vulnerable
to the dangers of overfitting.

7

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
ccu
racy

On training data
On test data

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� �� �

40

20

30

er
ro

r
(%

)

50

tree size
50

test

train

0 100
10

Figure 3: An example of over-fitting from real world data. As the complexity of the hy-
pothesis (in this case, a decision tree) increases, ˆerr(h) approaches 0, but err(h) reaches a
minimum and begins to rise.

3 Boosting

This largely marks the end of the general sample complexity portion of the class. In the
next class and coming weeks, we will examine various learning algorithms in rigorous math-
ematical detail.

The first such algorithm we will be looking at, Boosting, grew out of the PAC learning
model. The question Boosting tries to answer is: PAC learning depends on making ε
arbitrarily small, but suppose this is impossible? Is there even so a way to force error to
0, despite this limitation? The answer is that it is possible – this is the basis of Boosting
algorithms.

To start off our Boosting analysis, we say that a concept class C is weakly learnable if
∃ an algorithm A and ∃γ > 0 such that, given m training examples, A finds a hypothesis
h ∈ H such that

∀c ∈ C, ∀D, δ > 0 :

ε ≥ 1/2 − γ

Pr[err(h) > ε] ≤ δ

Next week, we will answer the questions: is weak learning equivalent to strong learning?
i.e., Can a weak learner A be converted to a strong learner?

8

