
1

Signals

COS 217

2

Goals of Today’s Lecture
• Overview of signals
o Notifications sent to a process
o UNIX signal names and numbers
o Ways to generate signals

• Signal handling
o Installing signal handlers
o Ignoring vs. blocking signals
o Avoiding race conditions

• Keeping track of the passage of time
o Interval timers
o Real time vs. CPU time

3

Signals
• Event notification sent to a process at any time
o An event generates a signal
o OS stops the process immediately
o Signal handler executes and completes
o The process resumes where it left off

Process
movl
pushl
call foo
addl
movl
.
.
.

handler()
{
…
}

signal

4

Examples of Signals
• User types control-C
o Event generates the “interrupt” signal (SIGINT)
o OS stops the process immediately
o Default handler terminates the process

• Process makes illegal memory reference
o Event generates “segmentation fault” signal (SIGSEGV)
o OS stops the process immediately
o Default handler terminates the process, and dumps core

5

Sending Signals from Keyboard
• Steps
o Pressing keys generates interrupts to the OS
o OS interprets key sequence and sends a signal

• OS sends a signal to the running process
o Ctrl-C INT signal

–By default, process terminates immediately
o Ctrl-Z TSTP signal

–By default, process suspends execution
o Ctrl-\ ABRT signal

–By default, process terminates immediately,
and creates a core image

6

Sending Signals From The Shell
•kill -<signal> <PID>
o Example: kill -INT 1234

– Send the INT signal to process with PID 1234
– Same as pressing Ctrl-C if process 1234 is running

o If no signal name or number is specified, the default is to
send an SIGTERM signal to the process,

•fg (foreground)
o On UNIX shells, this command sends a CONT signal
o Resume execution of the process (that was suspended

with Ctrl-Z or a command “bg”)
o See man pages for fg and bg

7

Sending Signals from a Program
• The kill command is implemented by a system call
#include <sys/types.h>
#include <signal.h>
int kill(pid_t pid, int sig);

• Example: send a signal to itself
if (kill(getpid(), SIGABRT))

exit(0);

o The equivalent in ANSI C is:
int raise(int sig);

if (raise(SIGABRT) > 0)
exit(1);

8

Predefined and Defined Signals
• Find out the predefined signals
% kill –l
% HUP INT QUIT ILL TRAP ABRT BUS FPE KILL
USR1 SEGV USR2 PIPE ALRM TERM STKFLT CHLD
CONT STOP TSTP TTIN TTOU URG XCPU XFSZ
VTALRM PROF WINCH POLL PWR SYS RTMIN
RTMIN+1 RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2
RTMAX-1 RTMAX

• Applications can define their own signals
o An application can define signals with unused values

9

Some Predefined Signals in UNIX
#define SIGHUP 1 /* Hangup (POSIX). */
#define SIGINT 2 /* Interrupt (ANSI). */
#define SIGQUIT 3 /* Quit (POSIX). */
#define SIGILL 4 /* Illegal instruction (ANSI). */
#define SIGTRAP 5 /* Trace trap (POSIX). */
#define SIGABRT 6 /* Abort (ANSI). */
#define SIGFPE 8 /* Floating-point exception (ANSI). */
#define SIGKILL 9 /* Kill, unblockable (POSIX). */
#define SIGUSR1 10 /* User-defined signal 1 (POSIX). */
#define SIGSEGV 11 /* Segmentation violation (ANSI). */
#define SIGUSR2 12 /* User-defined signal 2 (POSIX). */
#define SIGPIPE 13 /* Broken pipe (POSIX). */
#define SIGALRM 14 /* Alarm clock (POSIX). */
#define SIGTERM 15 /* Termination (ANSI). */
#define SIGCHLD 17 /* Child status has changed (POSIX). */
#define SIGCONT 18 /* Continue (POSIX). */
#define SIGSTOP 19 /* Stop, unblockable (POSIX). */
#define SIGTSTP 20 /* Keyboard stop (POSIX). */
#define SIGTTIN 21 /* Background read from tty (POSIX). */
#define SIGTTOU 22 /* Background write to tty (POSIX). */
#define SIGPROF 27 /* Profiling alarm clock (4.2 BSD). */

10

Signal Handling
• Signals have default handlers
o Usually, terminate the process and generate core image

• Programs can over-ride default for most signals
o Define their own handlers
o Ignore certain signals, or temporarily block them

• Two signals are not “catchable” in user programs
o KILL

– Terminate the process immediately
– Catchable termination signal is TERM

o STOP
– Suspend the process immediately
– Can resume the process with signal CONT
– Catchable suspension signal is TSTP

11

Installing A Signal Handler
• Predefined signal handlers
o SIG_DFL: Default handler
o SIG_IGN: Ignore the signal

• To install a handler, use
#include <signal.h>

typedef void (*sighandler_t)(int);
sighandler_t signal(int sig, sighandler_t handler);

o Handler will be invoked, when signal sig occurs
o Return the old handler on success; SIG_ERR on error
o On most UNIX systems, after the handler executes, the

OS resets the handler to SIG_DFL

12

Example: Clean Up Temporary File
• Program generates a lot of intermediate results
o Store the data in a temporary file (e.g., “temp.xxx”)
o Remove the file when the program ends (i.e., unlink)

#include <stdio.h>

char *tmpfile = “temp.xxx”;
int main() {

FILE *fp;

fp = fopen(tmpfile, “rw”);

…
fclose(fp);

unlink(tmpfile);

return(0);
}

13

Problem: What about Control-C?
• What if user hits control-C to interrupt the process?
o Generates a SIGINT signal to the process
o Default handling of SIGINT is to terminate the process

• Problem: the temporary file is not removed
o Process dies before unlink(tmpfile) is performed
o Can lead to lots of temporary files lying around

• Challenge in solving the problem
o Control-C could happen at any time
o Which line of code will be interrupted???

• Solution: signal handler
o Define a “clean-up” function to remove the file
o Install the function as a signal handler

14

Solution: Clean-Up Signal Handler
#include <stdio.h>

#include <signal.h>

char *tmpfile = “temp.xxx”;

void cleanup() {
unlink(tmpfile);

exit(1);

}

int main() {

if (signal(SIGINT, cleanup) == SIG_ERR)

fprintf(stderr, “Cannot set up signal\n”);

…
return(0);

}

15

Ignoring a Signal
• Completely disregards the signal
o Signal is delivered and “ignore” handler takes no action
o E.g., signal(SIGINT, SIG_IGN) to ignore the ctrl-C

• Example: background processes (e.g., “a.out &”)
o Many processes are invoked from the same terminal

– And, just one is receiving input from the keyboard
o Yet, a signal is sent to all of these processes

– Causes all processes to receive the control-C
o Solution: shell arranges to ignore interrupts

– All background processes use the SIG_IGN handler

16

Example: Clean-Up Signal Handler
#include <stdio.h>

#include <signal.h>

char *tmpfile = “temp.xxx”;

void cleanup() {
unlink(tmpfile);

exit(1);

}

int main() {

if (signal(SIGINT, cleanup) == SIG_ERR)

fprintf(stderr, “Cannot set up signal\n”);

…
return(0);

}

Problem: What if this is a background
process that was ignoring SIGINT???

17

Solution: Check for Ignore Handler
•signal() system call returns previous handler
o E.g., signal(SIGINT, SIG_IGN)

– Returns SIG_IGN if signal was being ignored
– Sets the handler (back) to SIG_IGN

• Solution: check the value of previous handler
o If previous handler was “ignore”

– Continue to ignore the interrupt signal
o Else

– Change the handler to “cleanup”

18

Solution: Modified Signal Call
#include <stdio.h>

#include <signal.h>

char *tmpfile = “temp.xxx”;

void cleanup() {
unlink(tmpfile);

exit(1);

}

int main() {

if (signal(SIGINT, SIG_IGN) != SIG_IGN)

signal(SIGINT, cleanup);

…
return(0);

}

Solution: If SIGINT was ignored,
simply keep on ignoring it!

19

Blocking or Holding a Signal
• Temporarily defers handling the signal
o Process can prevent selected signals from occurring
o … while ensuring the signal is not forgotten
o … so the process can handle the signal later

• Example: testing a global variable set by a handler
int myflag = 0;

void myhandler() {
myflag = 1;

}

int main() {
if (myflag == 0)

/* do something */

}

Problem: myflag
might become 1 just
after the comparison!

20

Race Condition: Salary Example

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

Handler for “Monthly salary signal”

21

Race Condition: Handler Starts

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

2000

22

Race Condition: Signal Again

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

} void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

2000

23

Race Condition: 2nd Handler Call

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

} void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

2000

2000

24

Race Condition: Back to 1st Handler

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

} void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

2000

2050

25

Race Condition: Lost Money!

void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

} void add_salary_to_savings() {

int tmp;

tmp = savingsBalance;

tmp += monthlySalary;

savingsBalance = tmp;

}

2000

2050

You just lost a month’s worth of salary!

26

Blocking Signals
• Why block signals?
o An application wants to ignore certain signals
o Avoid race conditions when another signal happens in

the middle of the signal handler’s execution

• Two ways to block signals
o Affect all signal handlers
sigprocmask()

o Affect a specific handler
sigaction()

27

Block Signals
• Each process has a signal mask in the kernel
o OS uses the mask to decide which signals to deliver
o User program can modify mask with sigprocmask()

•int sigprocmask() with three parameters
o How to modify the signal mask (int how)
–SIG_BLOCK: Add set to the current mask
–SIG_UNBLOCK: Remove set from the current mask
–SIG_SETMASK: Install set as the signal mask

o Set of signals to modify (const sigset_t *set)
o Old signals that were blocked (sigset_t *oset)

• Functions for constructing sets
o sigemptyset(), sigaddset(), …

28

Example: Block Interrupt Signal

#include <stdio.h>

#include <signal.h>

sigset_t newsigset;

int main() {

sigemptyset(&newsigset);

sigaddset(&newsigset, SIGINT);

if (sigprocmask(SIG_BLOCK, &newsigset, NULL) < 0)

fprintf(stderr, “Could not block signal\n”);

…

}

29

Problem: Blocking Signals in Handler

• Goal: block certain signals within a handler
o Another signal might arrive at the start of the handler
o … before calling the system call to block signals

• Solution: install handler and the mask together
o Sigaction() system call, with three parameters

– Signal number (int signum)
– Set new signal action (const struct sigaction *)
– Examine old signal action (struct sigaction *)

o Sigaction data structure
– Handler for the signal
– Mask of additional signals to block during the handler
– Flags controlling delivery of the signal

30

Sigaction() vs. Signal()
• Benefits of sigaction() over signal()
o Set the mask and handler together
o Examine the existing handler without reassigning it
o Provide handler with information about process state

• You should not mix the two system calls
o They interact in strange ways
o In Assignment #7, we recommend using sigaction()

31

Keeping Track of Passage of Time
• Interval timers
o Generate a signal after a specific time interval

• Real time (or wall-clock time)
o Elapsed time, independent of activity
o Not an accurate measure of execution time
o Timer generates a SIGALRM signal

• Virtual time (or CPU time)
o Time the process spends running
o Doesn’t include spent by other processes
o Timer generates a SIGPROF signal

32

Interval Timer in Real Time
• Sends an SIGALRM signal after n seconds

unsigned int alarm(unsigned seconds);

• Example
#include <signal.h> /* signal names and API */
void catch_alarm(int sig) {

if (signal(SIGALRM, catch_alarm) == SIG_ERR)
...;

...
}
main(void) {

if (signal(SIGALRM, catch_alarm) == SIG_ERR)
...;

alarm(10);

...;
}

33

Interval Timer in CPU Time
• Send an signal after an interval timer expires

#include <sys/time.h>
int setitimer(int which,
const struct itimerval *value,
struct itimerval *ovalue);

• Example: SIGPROF signal every 10 milliseconds
struct itimerval timer;

timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = 10000; /* 10ms */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = 10000; /* reload 10ms */
if (setitimer(ITIMER_PROF, &timer, NULL) == ...)

...;

• On Linux, the minimal effective granularity is 10ms.

34

Conclusions
• Signals
o An asynchronous event mechanism
o Use sigaction() and blocking to avoid race conditions
o Signal handlers should be simple and short
o Most predefined signals are “catchable”

• Interval timers
o Real time (SIGALRM) or CPU time (SIGPROF)
o Linux imposes 10ms as the minimal granularity

	Signals
	Goals of Today’s Lecture
	Signals
	Examples of Signals
	Sending Signals from Keyboard
	Sending Signals From The Shell
	Sending Signals from a Program
	Predefined and Defined Signals
	Some Predefined Signals in UNIX
	Signal Handling
	Installing A Signal Handler
	Example: Clean Up Temporary File
	Problem: What about Control-C?
	Solution: Clean-Up Signal Handler
	Ignoring a Signal
	Example: Clean-Up Signal Handler
	Solution: Check for Ignore Handler
	Solution: Modified Signal Call
	Blocking or Holding a Signal
	Race Condition: Salary Example
	Race Condition: Handler Starts
	Race Condition: Signal Again
	Race Condition: 2nd Handler Call
	Race Condition: Back to 1st Handler
	Race Condition: Lost Money!
	Blocking Signals
	Block Signals
	Example: Block Interrupt Signal
	Problem: Blocking Signals in Handler
	Sigaction() vs. Signal()
	Keeping Track of Passage of Time
	Interval Timer in Real Time
	Interval Timer in CPU Time
	Conclusions

