What computers just cannot do

COS 116 3/7/2006 Instructor: Sanjeev Arora

Epimenides Paradox

- Κρ τες ε ψε σται
 "Cretians, always liars!"
- But Epimenides was a Cretian!'

(can be resolved...)

More troubling: "This sentence is false."

Recap from last time

Ð.

- Turing-Post computational model:
 - Greatly simplified model
 - □ Infinite tape, each square either 0/1
 - Program = finite sequence of instructions (only 6 types!)
 - Unlike pseudocode, no conditionals or loops, only "GOTO"

 \Box code(*P*) = binary representation of program *P*

Motivation

Simplify!

(Get to the heart of the matter)

Doubling program

1. PRINT 0 2. GO LEFT 3. GO TO STEP 2 IF 1 SCANNED 4. PRINT 1 5. GO RIGHT 6. GO TO STEP 5 IF 1 SCANNED 7. PRINT 1 8. GO RIGHT 9. GO TO STEP 1 IF 1 SCANNED **10. STOP**

Halting

Some facts

Fact 1: Every pseudocode program can be written as a T-P program, and vice versa

Fact 2: There is a <u>universal T-P program</u>

Discussion

Is there a universal pseudocode program ?

How would you write it?

Composing programs P_1 , P_2

Desired: A T-P program that, on input V:
First runs P₁ on V
If the previous step halts, runs P₂ on the new tape contents

Ideas??

Halting Problem

- Decide whether P halts on V or not
- Cannot be solved! Turing proved that no Turing-Post program can solve the Halting Problem

Proof (by contradiction)

- Suppose *H* is a Turing-Post program solving the Halting problem
 - Use it to write a new program P_0 :
 - 1. On input V, P_0 checks if V is the code to a Turing-Post program
 - 2. If not, HALT
 - 3. Else, use a Doubling Program to get V, V
 - 4. Run *H* on *V*,*V*
 - 5. If *H* says "doesn't halt", then HALT immediately
 - 6. Otherwise, go into an infinite loop

Proof (cont'd)

P_0

- 1. On input *V*, check if *V* is the code to a Turing-Post program
- 2. If not, HALT
- 3. Else, use a Doubling Program to get V, V
- 4. Run *H* on *V*,*V*
- 5. If *H* says "doesn't halt", then HALT immediately
- 6. Otherwise, go into an infinite loop

- But does P₀ halt on code(P₀)?
- If it doesn't, then at step 5 it should halt
- If it does, then it should reach step 6 and go into an infinite loop (i.e. not halt!)

Lessons to take away

 Computation is a very simple process (can arise in unexpected places)

Universal Program

- No real boundary between hardware, software, and data
- No program that decides whether or not mathematical statements are theorems.

Age-old mystery: Self-reproduction.

How does the seed encode the whole?

Self-reproducing programs

Fact: for every program P, there exists a program P' that has the exact same functionality except at the end it also prints code(P') on the tape

Discussion next time: How to write a self-reproducing T-P program

Hint: The idea is the following:

Write the following twice, the second time in quotes "Write the following twice, the second time in quotes"