
What is the computational
cost of automating
brilliance or serendipity?
(P vs NP question and related musings)

COS 116
4/18/2006
Instructor: Sanjeev Arora

Combination lock

Why is it secure?
(Assume it cannot be picked)

Ans: If the combination has 6 digits, thief
must try 106 = 1 million combinations

Exponential running time

2n time to solve instances of “size” n

Main fact to remember:

For n =300,
2n > number of atoms in the visible universe.

Increase n by 1 running time doubles!

Boolean satisfiability

Does this formula have a satisfying
assignment?
What if instead we had 100 variables?
1000 variables?
How long will it take to determine the
assignment?

(A + B + C) · (D + F + G) · (A + G + K) · (B + P + Z) · (C + U + X)

Discussion
Is there an inherent difference between

being creative / brilliant

and

being able to appreciate creativity / brilliance?

What is a computational analogue of this phenomenon?

A Proposal

Brilliance = Ability to find “needle in a
haystack”

Comments??

Beethoven finds “satisfying
assignments” to our neural circuits
for music appreciation

Rumor mill problem
Social network for COS
116
Each node represents a
student
Two nodes connected by
an edge iff corresponding
students are friends
Elaine starts a rumor
Will it reach Will?
Suggest an algorithm
How does running time
depend on network size?
Internet servers solve this
problem all the time
(“traceroute” in Lab 8).

CLIQUE Problem
In COS 116 social network, is
there a CLIQUE with 5 or more
students?

CLIQUE: Group of students,
every pair of whom are friends

What is a good algorithm for
detecting cliques?

How does efficiency depend
on network size and desired
clique size?

Harmonious Dorm Floor

Given: Social network involving n students.

Edges correspond to pairs of students
who don’t get along.

Decide if there is a set of k students who
would make a harmonious group (everybody
gets along).

Just the Clique problem in disguise!

Exhaustive Search/Combinatorial
Explosion

Naïve algorithms for many “needle in a haystack”
tasks involve checking all possible answers
exponential running time.

Ubiquitous in the computational universe
Can we design smarter algorithms?

Traveling Salesman Problem (aka
UPS Truck problem)

Input: n points and all
pairwise inter-point
distances, a number k
Decide: is there a
path that visits all the
points (“salesman
tour”) whose total
length is at most k?

Finals scheduling

Input: n students, k classes, enrollment list for
each class, m time slots in which to schedule
finals

Define “conflict”: a student who is in two classes
that have finals in the same time slot

Decide: Is there a finals schedule with at most C
conflicts?

The P vs NP Question

P: problems for which solutions can be found in
polynomial time (nc where c is a fixed integer
and n is “input size”). Example: Rumor Mill

NP: problems where a good solution can be
checked in nc time. Example: Boolean
Satisfiability, Traveling Salesman, Clique

Question: Is P = NP?
“Can we automate brilliance?”?

(Aside: Choice of computational model ---Turing
machine, pseudocode, etc.--- irrelevant.)

NP-complete Problems

Problems in NP that are “the hardest”
If they are in P then so is every NP
problem.

Examples: Boolean Satisfiability, Traveling Salesman,

Clique, Finals Scheduling, 1000s of others

How could we possibly prove these problems
are “the hardest”?

“Reduction”

“If you give me a place to
stand, I will move the earth.”
– Archimedes (~ 250BC)

“If you give me a polynomial-time algorithm
for Boolean Satisfiability, I will give you a
polynomial-time algorithm for every NP
problem.” --- Cook, Levin (1971)

“Every NP problem is a satisfiability
problem in disguise.”

Dealing with NP-complete
problems

1. Heuristics (algorithms that produce
reasonable solutions in practice)

2. Approximation algorithms (compute
provably near-optimal solutions)

Computational Complexity Theory: Study of
Computationally Difficult problems.

Study matter → look at mass, charge, etc.

Study processes → look at computational difficulty

A new lens on the world?

Example 1: Economics
General equilibrium theory:

Input: n agents, each has some initial
endowment (goods, money, etc.) and
preference function

General equilibrium: system of prices such that
for every good, demand = supply.

Equilibrium exists [Arrow-Debreu, 1954].
Economists assume markets find it (“invisible
hand”)

But, no known efficient algorithm to compute it.
How does the market compute it?

Example 2: Quantum Computation

Central tenet of quantum mechanics: when a particle
goes from A to B, it takes all possible paths all at the
same time

[Shor’97] Can use quantum behavior to efficiently factor
integers (and break cryptosystems!)

Can quantum computers be built, or is quantum
mechanics not a correct description of the world?

A B
Peter Shor

Example 3: Artificial Intelligence

What is computational complexity of
language recognition?

Chess playing?

Etc. etc.

Potential way to show the brain is not a computer:
Show it routinely solves some problem that provably takes
exponential time on computers.

Why P vs NP is a Million-dollar
open problem

If P = NP then Brilliance becomes routine (best
schedule, best route, best design, best math proof,
etc…)

If P ≠ NP then we know something new and
fundamental not just about computers but about the
world (akin to “Nothing travels faster than light”).

More than a lens: some practical
uses of computational complexity

Example 1: CAPTCHAs

Example 2 (next time): Cryptography

	What is the computational cost of automating brilliance or serendipity?�(P vs NP question and related musings)
	Combination lock
	Exponential running time
	Boolean satisfiability
	Discussion
	A Proposal
	Rumor mill problem
	CLIQUE Problem
	Harmonious Dorm Floor
	Exhaustive Search/Combinatorial Explosion
	Traveling Salesman Problem (aka UPS Truck problem)
	Finals scheduling
	The P vs NP Question
	NP-complete Problems
	“Reduction”
	Dealing with NP-complete problems
	Computational Complexity Theory: Study of Computationally Difficult problems.
	Example 1: Economics
	Example 2: Quantum Computation
	Example 3: Artificial Intelligence
	Why P vs NP is a Million-dollar 		open problem
	More than a lens: some practical uses of computational complexity

