Sequential and Clocked Circuits; Finite State Machines

3/28/2006
COS 116
Instructor: Sanjeev Arora

Sequential Circuits (Recap.)

- Circuits with AND, OR and NOT gates.
- Cycles are allowed.
- Can exhibit "memory".
- May exhibit instabilities (saw last time).

Recap: D Flip Flop

a.k.a. "Airlock", "Master-Slave"

Basic Memory Block - stores 1 bit.

If we "toggle" the write input (setting it 1 then setting it 0) then M acquires the value of D.

Timing Diagram

Time
W

M

Time

What controls the "Write" signal?

- Often, the system clock!
- "clock" = device that sends out a fluctuating voltage signal that looks like this

Write $=1$

Write $=0$
\qquad

Synchronous Sequential Circuit

(aka Clocked Sequential Circuit)

Shorthands

Clock Speeds

1974	Intel 8080	2 MHz (Mega $=$ Million)
Heinrich Hertz $1857-94$		
	Original IBM PC	4.77 MHz
1993	Intel Pentium	66 MHz
2005	Pentium 4	3.4 GHz (Giga $=$ Billion)

Distance traveled by light during 1 clock cycle of Pentium 4 4 inches

What limits clock speed?

Finite State Machines

State diagram for automatic door

No Person Detected

Implementing as synchronous circuit

INPUT

$$
\begin{aligned}
& 0=\text { No Person Detected } \\
& 1=\text { Person Detected }
\end{aligned}
$$

STATE

$$
\begin{aligned}
& 0=\text { Door Closed } \\
& 1=\text { Open }
\end{aligned}
$$

No Person Detected

Input	Present State	Next State
0	0	0
1	0	1
0	1	0
1	1	1

Implementation

Moore FSM (see handout)

K Flip flops allow FSM to have 2^{K} states

Other examples of FSMs

- Sisyphus

- Brook's Genghis (51 FSMs) (see p. 46 in our text)
- Human Soul a la Aquinas (see Handout)

Portion of Genghis AFSM Network

Finally...

 How computers execute programs.
Scribbler Control Panel Program

Machine Executable Code

Meet the little green man..

The Fetch - Decode - Execute FSM

. 0110100000110111101010111.
Program stored in machine memory; each instruction represented by say 64 bits

Discussion:How would you implement a

Turing-Post program with a digital circuit?
1.PRINT 0
2. GO RIGHT
3. GO TO STEP 1 if 1 SCANNED
4. GO TO STEP 1 if 0 SCANNED
5. STOP

Assume "PRINT" and "SCAN" as basic operations

