Logic: From Greeks to philosophers to circuits.

COS 116
 3/14/2005
 Instructor: Sanjeev Arora

In addition to course handouts, many web-based resources; e.g., http://www.allaboutcircuits.com/vol_4/chpt_7/1.htm|

3 equivalent ways of representation

Ed goes to the party if Dan doesn't and Stella does
Boolean Expression $E=S A N D \bar{D}=S \cdot \bar{D}$

Boolean Circuit

Truth table - Gives value of E for every possible assignment to D, S. TRUE $=1$; FALSE $=0$.
(E is a "Boolean function" of D, S)

D	S	E
0	0	0
0	1	1
1	0	0
1	1	0

Boolean "algebra"

A AND B written as A. B
A OR B written as $A+B$
$0 \cdot 0=0$
$0+0=0$
$0 \cdot 1=0$
$1+0=1$
$1 \cdot 1=1 \quad 1+1=1$
Funny arithmetic

Boolean gates

Shannon (1939)

High voltage $=1$
Low voltage $=0$

Output voltage is high if both input voltages are high, otherwise output voltage low

Output voltage is high if either input voltage is high, otherwise output voltage low

Output voltage is high if input voltage is low, otherwise output voltage low

Claude Shannon (1916-2001)

founder of many fields (circuits, information theory, artificial intelligence...)

With "Theseus" mouse

Combinational circuit

- Boolean gates connected by wires

Wires: transmit voltage (and hence value)

■ Important: no cycles allowed

Examples

4-way AND

(Sometimes we use this for shorthand)

More complicated example

Combinational circuits and control

- "If data has not arrived and packet has been sent, send a signal"

Circuits compute functions

- Every combinational circuit computes a Boolean function of its inputs

Ben Revisited

Ben only rides to class if he overslept, but even then if it is raining he'll walk and show up late to class (he really hates to bike in the rain). But if there's an exam that day he'll bike if he overslept, even in the rain.

B: Ben Bikes
\mathbf{R} : It is raining
\mathbf{E} : There is an exam today
O: Ben overslept
Give boolean expression for B in terms of R, E and O

Ben's truth table

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Going from truth table to Boolean expression

- Take OR of all input combinations that lead to 1

$$
\begin{aligned}
B= & O \cdot \bar{R} \cdot \bar{E}+O \cdot \bar{R} \cdot E+ \\
& O \cdot R \cdot E
\end{aligned}
$$

O	R	E	B
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Aside: AND, OR, and NOT gates suffice to implement every boolean function!

Sizes of representations

■ For k variables:

k	10	20	30
2^{k}	1024	1048576	1073741824

Tools for reducing size:

A	B	\ldots	X
0	0	\ldots	0
0	0	\ldots	0
0	1	\ldots	0
0	1	\ldots	1
\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots
1	1	\ldots	1

(a) circuit optimization (b) modular design

Expression simplification

- Some simple rules:

$$
\begin{aligned}
& x \cdot 1=x \\
& x \cdot 0=0 \\
& x+0=x \\
& x+1=1 \\
& x+x=x \cdot x=x \\
& x \cdot(y+z)=x \cdot y+x \cdot z \\
& x+(y \cdot z)=(x+y) \cdot(x+z)
\end{aligned}
$$

$$
\begin{aligned}
x & \cdot y+x \cdot \bar{y} \\
& =x \cdot(y+\bar{y}) \\
& =x \cdot 1 \\
& =x
\end{aligned}
$$

De Morgan's Laws:
$\overline{x \cdot y}=\bar{x}+\bar{y}$
$\overline{x+y}=\bar{x} \cdot \bar{y}$

Simplifying Ben's circuit

$$
\begin{aligned}
\square & =O \cdot \bar{R} \cdot \bar{E}+O \cdot \bar{R} \cdot E+O \cdot R \cdot E \\
& =O \cdot(\bar{R} \cdot \bar{E}+\bar{R} \cdot E+R \cdot E) \\
& =O \cdot(\bar{R} \cdot(\bar{E}+E)+R \cdot E) \\
& =O \cdot(\bar{R}+R \cdot E) \\
& =O \cdot((\bar{R}+R) \cdot(\bar{R}+E)) \\
& =O \cdot(\bar{R}+E)
\end{aligned}
$$

Something to think about: How hard is Circuit Verification?

- Given a circuit, decide if it is trivial (either it always outputs 1 or always outputs 0 no matter the input)

- Alternative statement: Decide if there is any setting of the inputs that makes the circuit evaluate to 1.

Time required?

Boole's reworking of Clarke's "proof" of existence of God (see handout)

- General idea: Try to prove that Boolean expressions E_{1}, E_{2}, \ldots, E_{k} cannot simultaneously be true
- Method: Show $E_{1} \cdot E_{2} \cdot \ldots \cdot E_{k}=0$
- Discussion for next time: What exactly does Clarke's "proof" prove? How convincing is such a proof to you?

Also: Do Google search for "Proof of God's Existence."

Going beyond combinational circuits

- Need 2-way communication between circuits (i.e., need to allow cycles!)

Ethernet card

- Need memory (scratchpad)

Circuit for Binary Addition?

$25=11001$
$29=11101$
110110

Read handout: Will discuss next time.

Worked out example: Going from truth table to Boolean expression

- Take OR of all input combinations that lead to 1

$$
\begin{aligned}
\mathrm{X}= & \overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C}+\mathrm{A} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C}+ \\
& \mathrm{A} \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}
\end{aligned}
$$

A	B	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

"Majority"

