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Abstract

Streaming data analysis has recently attracted at-
tention in numerous applications including telephone
records, web documents and clickstreams. For such
analysis, single-pass algorithms that consume a small
amount of memory are critical. We describe such a
streaming algorithm that effectively clusters large data
streams. We also provide empirical evidence of the
algorithm’s performance on synthetic and real data
streams.

1 Introduction

For many recent applications, the concept of a data
stream is more appropriate than a data set. By na-
ture, a stored data set is an appropriate model when
significant portions of the data are queried again and
again, and updates are small and/or relatively infre-
quent. In contrast, a data stream is an appropriate
model when a large volume of data is arriving con-
tinuously and it is either unnecessary or impractical
to store the data in some form of memory. Some ap-
plications naturally generate data streams as opposed
to simple data sets. Astronomers, telecommunications
companies, banks, stock-market analysts, and news or-
ganizations, for example, have vast amounts of data
arriving continuously.

Data streams are also appropriate as a model of
access to large data sets stored in secondary memory
where performance requirements necessitate access via
linear scans. For researchers mining medical or mar-
keting data, for example, the volume of data stored on
disk is so large that it is only possible to make a small
number of passes over the data.

In the data stream model [17], the data points can
only be accessed in the order in which they arrive. Ran-
dom access to the data is not allowed; memory is as-
sumed to be small relative to the number of points, and
so only a limited amount of information can be stored.

The challenge facing algorithm designers is to perform
meaningful computation with these restrictions.

A common form of data analysis in these applica-
tions involves clustering, i.e., partitioning the data set
into subsets (clusters) such that members of the same
cluster are similar and members of distinct clusters are
dissimilar. This paper is concerned with the challeng-
ing problem of clustering data arriving in the form of
stream. We provide a streaming algorithm with the-
oretical guarantees on its performance. We also pro-
vide a new clustering algorithm that is used by our
streaming method. We give empirical evidence that the
clustering algorithm outperforms the commonly-used
k–Means algorithm. We also experimentally demon-
strate our streaming algorithm’s superior performance
to Birch.

In what follows, we first describe the clustering prob-
lem in greater detail, discuss related work and then give
an overview of the paper.

The Clustering Problem In our work, we focus on
the following version of the clustering problem: given
an integer k and a collection N of n points in a metric
space, find k medians (cluster centers) in the metric
space so that each point in N is assigned to the cluster
defined by the median point nearest to it. The quality
of the clustering is measured by the sum of squared
distances (SSQ) of data points from their assigned me-
dians. The goal is to find a set of k medians which
minimize the SSQ measure. The generalized optimiza-
tion problem, in which any distance metric substitutes
for the squared Euclidean distance, is known as the
k–Median problem1.

Since the general problem is known to be NP-hard,
the goal is to devise algorithms that produce solu-
tions with near-optimal solutions in near-linear running
time. The k–Means algorithm provides a heuristic so-
lution to the k–Median problem. The algorithm has
enjoyed considerable practical success [3], although the

1Although squared Euclidean distance is not a metric, it
obeys a relaxed triangle inequality and therefore behaves much
like a metric.
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solution it produces is only guaranteed to be a local
optimum [28]. On the other hand, in the algorithms
literature, several approximation algorithms have been
proposed for k–Median. A c-approximation algorithm
is guaranteed to find a solution whose SSQ is within
a factor c of the optimal SSQ, even for a worst-case
input. Recently, Jain and Vazirani [20] and Charikar
and Guha [5] have provided such approximation algo-
rithms for constants c ≤ 6. These algorithms typically
run in time and space Ω(n2) and require random ac-
cess to the data. Both space requirements and the need
for random access render these algorithms inapplicable
to data streams. Most heuristics, including k–Means,
are also infeasible for data streams because they re-
quire random access. As a result, several heuristics
have been proposed for scaling clustering algorithms,
for example [4, 14]. In the database literature, the
BIRCH system [32] is commonly considered to pro-
vide a competitive heuristic for this problem. While
these heuristics have been tested on real and synthetic
datasets, there are no guarantees on their SSQ perfor-
mance.

Related Work The k-Means algorithm and
BIRCH [32] are most relevant to our results. We
discuss these in more detail in Section 4. Most other
previous work on clustering either does not offer the
scalability required for a fast streaming algorithm or
does not directly optimize SSQ. We briefly review
these results — a thorough treatment can be found in
Han and Kinber’s book [15].

Partitioning methods subdivide a dataset into k
groups. One such example is the k-medoids algo-
rithm [21] which selects k initial centers, repeatedly
chooses a data point randomly, and replaces it with
an existing center if there is an improvement in SSQ.
k-medoids is related to the CG algorithm given in Sec-
tion 3.2.1, except that CG solves the facility location
variant which is more desirable since in practice one
does not know the exact number of clusters k (and
facility location allows as input a range of number of
centers). Choosing a new medoid among all the re-
maining points is time-consuming; to address this prob-
lem, CLARA [21] used sampling to reduce the number
of feasible centers. This technique is similar to what
we propose in Theorem 4. A distinguishing feature of
our approach is a careful understanding of how sample
size affects clustering quality. CLARANS [26] draws
a fresh sample of feasible centers before each calcula-
tion of SSQ improvement. All of the k-medoid types of
approaches, including PAM, CLARA, and CLARANS,
are known not to be scalable and thus are not appro-
priate in a streaming context.

Other examples of partitioning methods include
Bradley et al. [4] and its subsequent improvement by
Farnstorm et al. [9]. These methods place higher sig-
nificance on points later in the stream. In contrast, we
assume that our data stream is not sorted in any way.
Further, these approaches are not known to outperform
the popular BIRCH algorithm.

Hierarchical methods decompose a dataset into a
tree-like structure. Two common ones are HAC and
CURE [14]. Since these methods are designed to dis-
cover clusters of arbitrary shape, they do not necessar-
ily optimize SSQ.

Other types of clustering include density-based
methods, e.g., DBSCAN [8], OPTICS [2] and DEN-
CLUE [18] and grid-based methods, e.g., STING [31],
CLIQUE [1], Wave-Cluster [29], and OPTIGRID [19].
These algorithms are not designed to directly optimize
SSQ.

Research on data stream computation includes work
on sampling [30], finding quantiles of a stream of
points [22], and calculating the L1-difference of two
streams [11].

Overview of Paper The rest of this paper is orga-
nized as follows. We begin in Section 2 by formally
defining the stream model and the k–Median problem.
Our solution for k–Median is obtained via a variant
called facility location, which does not specify in ad-
vance the number of clusters desired, and instead eval-
uates an algorithm’s performance by a combination of
SSQ and the number of centers used.

Our discussion about streaming can be found in Sec-
tion 3. The streaming algorithm given in this section
is shown to enjoy theoretical quality guarantees. Sec-
tion 3.2 describes our LSEARCH algorithm.

We performed an extensive series of experiments
comparing LSEARCH against the k–Means algorithm,
on numerous low- and high-dimensional data. The
results presented in Section 4.1 uncover an interest-
ing trade-off between the cluster quality and the run-
ning time. We found that SSQ for k-means was worse
than that for LSEARCH, and that LSEARCH typi-
cally found near-optimum (if not the optimum) solu-
tion. Since both algorithms are randomized, we ran
each one several times on each dataset; over the course
of multiple runs, there was a large variance in the per-
formance of k–Means, whereas LSEARCH was consis-
tently good. LSEARCH took longer to run for each
trial but for most datasets found a near-optimal an-
swer before k–Means found an equally good solution.
On many datasets k–Means never found a good solu-
tion.
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2 Preliminaries

We begin by defining a stream more formally. A
data stream is a finite set N of points x1, . . . , xi, . . . , xn

that can only be read in increasing order of the indices
i. For example, these points might be vectors in <d.
A data stream algorithm is not allowed random access
but can retain a small amount of information about the
data it has seen so far. Its performance is measured
by the number of linear scans it takes over the data
stream, the amount of information it retains, and the
usual measures: in the case of a clustering algorithm,
for example, these could be SSQ and running time.

We will define the k-Median problem; the derived
problem of SSQ minimization with which this paper
is concerned; and finally the facility location problem
which will become relevant during the discussion of the
algorithms.

Suppose we are given a set N of n objects in a metric
space M with distance function d. Then the k–Median
problem is the problem of choosing k points c1, . . . , ck ∈
N so as to minimize

k∑

i=1

∑

x∈Ni

d(x, ci),

where Ni = {x ∈ N |∀j : d(cj , x) ≥ d(ci, x)}.
The SSQ minimization problem is identical except

that M = <b for some integer b, d is the Euclidean
metric, the medians can be arbitrary points in M , and
d2(x, ci) replaces d(x, ci) in the objective function; that
is, we minimize the “sum of squares” (SSQ) rather than
the sum of distances. Because of the similarity of these
two problems, for the remainder of the paper, we will
sometimes refer to the SSQ minimization problem as
k–Median.

We now turn to facility location, which is the same as
k–Median except that instead of restricting the number
of medians to be at most k we simply impose a cost for
each median, or facility. The additive cost associated
with each facility is called the facility cost.2. Assume
once again that we are given a facility cost z and a
set N of n objects in a metric space M with distance
function d. Then the facility location problem is to
choose a subset C ⊆ N so as to minimize the facility
clustering (FC) cost function:

FC(N,C) = z|C|+
|C|∑

i=1

∑

x∈Ni

d(x, ci),

2This problem is technically called uniform-cost facility loca-
tion. In the general facility location problem, each point could
have a different facility cost, but we will only consider the uni-
form version, in which the facility cost is the same for all points

(Ni = {x ∈ N |ci is the closest member of C to x }).
These problems are known to be NP-hard, and

several theoretical approximation algorithms are
known [20, 5].

3 Clustering Streaming Data

Our algorithm for clustering streaming data uses a
subroutine called LSEARCH, which will be explained
shortly.

3.1 Streaming Algorithm

We assume that our data actually arrives in chunks
X1, . . . , Xn, where each Xi is a set of points that fits
in main memory. We can turn any stream of individ-
ual points into a chunked stream by simply waiting for
enough points to arrive.

The streaming algorithm, STREAM, is as follows:
We cluster the ith chunk Xi using LSEARCH, and
assign each resulting median a weight equal to the sum
of the weights of its members from Xi. We then purge
memory, retaining only the k weighted cluster centers,
and apply LSEARCH to the weighted centers we have
retained from X1, . . . , Xi, to obtain a set of (weighted)
centers for the entire stream X1 ∪ · · · ∪Xi.

Algorithm STREAM is memory efficient since at the
ith point of the stream it retains only O(ik) points.
For very long streams, retaining O(ik) points may get
prohibitively large. In this case, we can once again
cluster the weighted ik centers to retain just k centers.

It has been shown that STREAM produces a solu-
tion whose cost is at most a constant times the cost we
would get by applying LSEARCH directly to the entire
stream (supposing it fit in main memory):

Theorem 1 [13] If at each iteration i, a c-
approximation algorithm is run in Steps 2 and 4 of
Algorithm STREAM, then the centers output are a 5c-
approximation to the optimum SSQ for X1 ∪ · · · ∪Xi,
assuming a distance metric on Rd. 3

This theorem shows that STREAM cannot output an
arbitrarily bad solution, although in practice we would
expect it to get much better solutions; our experimen-
tal results are consistent with this expectation.

3.2 LSEARCH Algorithm

STREAM needs a simple, fast, constant-factor-
approximation k–Median subroutine. We believe ours

3Without the Euclidean assumption, Algorithm STREAM is
a 10c-approximation.
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is the first such algorithm that also guarantees flexi-
bility in k. Here we will describe our new algorithm
for k–Median, which is based on the concept of local
search, in which we start with an initial solution and
then refine it by making local improvements. Through-
out this section, we will refer to the “cost” of a set of
medians, meaning the FC cost from the facility loca-
tion definition.

3.2.1 Previous Work on Facility Location

We begin by describing a simple algorithm4 CG for
solving the facility location problem on a set N of n
points in a metric space with metric (relaxed metric)
d(·, ·), when facility cost is z. First, we will make one
definition.

Assume that we have a feasible solution to facility
location on N given d(·, ·) and z. That is, we have
some set I ⊆ N of currently open facilities, and an as-
signment for each point in N to some (not necessarily
the closest) open facility. For every x ∈ N we define
gain of x to be the cost we would save (or further ex-
pend) if we were to open a facility at x (if one does not
already exist), and then perform all possible advan-
tageous reassignments and facility closings, subject to
the following two constraints: first, that points cannot
be reassigned except to x, and second, that a facility
with member points can be closed only if its members
are first reassigned to x. The gain of x can be easily
computed in O(|NI|) time.

Algorithm CG(data set N , facility cost z)

1. Obtain an initial solution (I, f) (I ⊆ N of facil-
ities, f an assignment function) that gives a n-
approximation to facility location on N with facil-
ity cost z.

2. Repeat Ω(log n) times:

• Randomly order N .
• For each x in this random order: calculate

gain(x), and if gain(x) > 0, add a facility
there and perform the allowed reassignments
and closures.

Charikar and Guha [5] describe a simple algorithm
that obtains an n-approximate initial solution that
could be used in step 1.

4It has been shown by Charikar and Guha [5] that this algo-
rithm will achieve a (1 +

√
2)-approximation to facility location

on N with facility cost z.

3.2.2 Our New Algorithm

The above algorithm does not directly solve k–Median
but could be used as a subroutine to a k–Median al-
gorithm, as follows. We first set an initial range for
the facility cost z (between 0 and an easy-to-calculate
upper bound); we then perform a binary search within
this range to find a value of z that gives us the desired
number k of facilities; for each value of z that we try,
we call Algorithm CG to get a solution.

Binary Search Two questions spring to mind, how-
ever: first, will such a binary search technique work,
and second, will this algorithm, which uses Algorithm
CG as a subroutine, find good solutions quickly?

As to the first, consider a dataset N (|N | = n),
with distance d(·, ·), on which we wish to solve facility
location. If the facility cost increases, the number of
centers in the optimal solution does not increase, the
SSQ does not decrease, and the total (FC) solution
cost increases. As opening a new facility becomes more
expensive, we are forced to close centers and give so-
lutions with higher assignment distances and FC cost.
These cost relationships justify a binary search on z
(proof omitted).

Theorem 2 Assume we have a set N of points with a
metric d : N × N → <+. Then given facility costs f
and f ′ with 0 ≤ f < f ′, a set C of k centers that is
optimal for f , and a set C ′ of k′ centers that is optimal
for f ′, the following are true:

1. k ≥ k′

2. SSQ(N,C) ≤ SSQ(N,C ′)

3. fk + SSQ(N,C) < f ′k′ + SSQ(N,C ′)

4. SSQ(N,C) = SSQ(N,C ′) iff k = k′.

For a given facility location instance, there may exist
a k such that there is no facility cost for which an opti-
mal solution has exactly k medians, but if the dataset
is “naturally k-clusterable,” then our algorithm should
find k centers. In particular, if having k rather than
k−1 medians allows the optimal assignment cost to de-
crease by a factor of k, then an optimal solution with
exactly k medians must exist (proof omitted).

Theorem 3 Given a dataset N , let Ai denote the best
assignment cost achievable for an instance of FL on N
if we allow i medians. If N has the property that Ak ≤

Aj

k−j+1 for all j < k then there is a facility location
solution with k centers.

The next question to answer is whether this method
of calling CG as a subroutine of a binary search is fast
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enough. The answer is that the algorithm’s Θ(n2 log n)
is prohibitive for large data streams. Therefore, we
describe a new local search algorithm that relies on
the correctness of the above algorithm but avoids the
super-quadratic running time by taking advantage of
the structure of local search in certain ways.

Finding a Good Initial Solution On each iter-
ation of step 2 above, we expect the total solution
cost to decrease by some constant fraction of the way
to the best achievable cost [5]; if our initial solution
is a constant-factor approximation rather than an n-
approximation (as used by Charikar and Guha), we
can reduce our number of iterations from Θ(log n) to
Θ(1). We will therefore use the following algorithm for
our initial solution:

Algorithm InitialSolution(data set N , facility
cost z)

1. Reorder data points randomly
2. Create a cluster center at the first point
3. For every point after the first,

• Let d be the distance from the current data
point to the nearest existing cluster center
• With probability d/z create a new cluster

center at the current data point; otherwise
add the current point to the best current clus-
ter

This algorithm runs in time proportional to n times
the number of facilities it opens and obtains an ex-
pected 8-approximation to optimum [24].

Sampling to Obtain Feasible Centers Next we
present a theorem that will motivate a new way of look-
ing at local search. It is stated and proved in terms of
the actual k–Median problem, but holds, with slightly
different constants, for SSQ minimization. Assume the
points c1, . . . , ck constitute an optimal solution to the
k–Median problem for the dataset N , that Ci is the set
of points in N assigned to ci, and that ri is the average
distance from a point in Ci to ci for 1 ≤ i ≤ k. Assume
also that, for 1 ≤ i ≤ k, |Ci|/|N | ≥ p. Let 0 < δ < 1
be a constant and let S be a set of m = 8

p log 2k
δ points

drawn independently and uniformly at random from
N .

Theorem 4 There is a constant α such that with high
probability, the optimum k–Median solution in which
medians are constrained to be from S has cost at most α
times the cost of the optimum unconstrained k–Median
solution (where medians can be arbitrary points in N).

Proof: If |S| = m = 8
p log 2k

δ then ∀i, Pr{|S ∩ Ci| <
mp/2} < δ

2k , by Chernoff bounds. Then Pr{∃i :
|S ∩ Ci| < mp/2} < δ

2 . Given that |S ∩ Ci| ≥ mp/2,
the the probability that no point from S is within
distance 2ri of the optimum center ci is at most
1
2

mp/2 ≤ 1
2

log 2k
δ = δ

2k by Markov’s Inequality. So
Pr{∃cj : ∀x ∈ Sd(x, ci) > 2ri} ≤ δ

2 . If, for each clus-
ter Ci, our sample contains a point xi within 2ri of ci,
the cost of the median set {x1, . . . , xk} is no more than
3 times the cost of the optimal k–Median solution (by
the triangle inequality, each assignment distance would
at most triple). 2

In some sense we are assuming that the smallest
cluster is not too small. If, for example, the smallest
cluster contains just one point, i.e., p = 1/|N |, then
clearly no point can be overlooked as a feasible cen-
ter. We view such a small subset of points as outliers,
not clusters. Hence we assume that outliers have been
removed. Therefore if instead of evaluating gain() for
every point x we only evaluate it on a randomly cho-
sen set of Θ( 1

p log k) points, we are still likely to choose
good medians but will finish our computation sooner.

Finding a Good Facility Cost Faster If our cost
changes very little from one iteration to the next and we
have far from k centers, then we stop trying to identify
how many centers a facility cost of z will yield, since
the answer is unlikely to be k. Further, if a particular
value of z yields exactly k centers and our total cost
is not decreasing by much then we also stop our bi-
nary search, since it is likely that z is close to the true
optimum facility cost.

Therefore, we will give a Facility Location subrou-
tine that our k–Median algorithm will call; it will take
a parameter ε ∈ < that controls how soon it stops try-
ing to improve its solution. The other parameters will
be the data set N of size n, the metric or relaxed metric
d(·, ·), the facility cost z, and an initial solution (I, a)
where I ⊆ N is a set of facilities and a : N → I is an
assignment function.

Algorithm FL(N , d(·, ·), z, ε, (I,a))

1. Begin with (I, a) as the current solution

2. Let C be the cost of the current solution on N .
Consider the feasible centers in random order, and
for each feasible center y, if gain(y) > 0, perform
all advantageous closures and reassignments (as
per gain description), to obtain a new solution
(I ′, a′) [a′ should assign each point to its closest
center in I ′]
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3. Let C ′ be the cost of the new solution; if C ′ ≤
(1− ε)C, return to step 2

Now we will give our k–Median algorithm for a data
set N with distance function d.

Algorithm LSEARCH (N, d(·, ·), k, ε, ε′, ε′′)

1. zmin ← 0
2. zmax ←

∑
x∈N d(x, x0) (for x0 an arbitrary point

in N)
3. z ← (zmax + zmin)/2
4. (I, a)← InitialSolution(N , z).
5. Randomly pick Θ( 1

p log k) points as feasible medi-
ans

6. While #medians 6= k and zmin < (1− ε′′)zmax:

• Let (F, g) be the current solution
• Run FL(N, d, ε, (F, g)) to obtain a new solu-

tion (F ′, g′)
• If |F ′| is “about” k, then (F ′, g′) ←

FL(N, d, ε′, (F ′, g′))
• If |F ′| > k then {zmin ← z and z ← (zmax +

zmin)/2}; else if |F ′| > k then {zmax ← z
and z ← (zmax + zmin)/2}

7. To simulate a continuous space, move each cluster
center to the center-of-mass for its cluster

8. Return our solution (F ′, g′)

The initial value of zmax is chosen as a trivial up-
per bound on the value of z we will be trying to find.
5 The running time of LSEARCH is O(nm + nk log k)
where m is the number of facilities opened by InitialSo-
lution. m depends on the properties of the dataset but
is usually small, so this running time is a significant
improvement over previous algorithms.

4 Experiments

4.1 Empirical Evaluation of LSEARCH

We present the results of experiments comparing the
performance of k–Means and LSEARCH. We con-
ducted all experiments on a Sun Ultra 2 with two,

5If the facility cost f is the sum of assignment costs when we
open only some particular facility, then the solution that opens
only this facility will have cost 2f . There may be an equally
cheap solution that opens exactly two facilities and has zero as-
signment cost (if every point is located exactly at a facility), and
there may be cheaper solutions that open only one facility (if
there is a different facility for which the sum of assignment costs
would be less than f), but there cannot exist an optimal solution
with more than two facilities. This value f is therefore an upper
bound for z since k–Median is trivial when k = 1.

200MHz processors, 256 MB of RAM, and 1.23 GB
of swap space,6 running SunOS 5.6.

Low-Dimensional Datasets We generated twenty-
eight small datasets and ran LSEARCH and k–Means
on each. Each of these consists of between five and
sixteen uniform-density, radius-one spheres of real vec-
tors, with five percent random noise. The noise is
uniform over the smallest b-dimensional rectangle that
is aligned with the axes and contains all the spheres.
Here, b denotes the dimension of the dataset, which
is at most four. The datasets have between one thou-
sand and seven thousand points each. To put the re-
sults of both algorithms in perspective relative to ear-
lier work, we also ran both algorithms on a dataset
distributed by the authors of BIRCH [32], which con-
sists of one hundred, two-dimensional Gaussians in a
ten-by-ten grid, with a thousand points each. We gen-
erated three types of datasets: grid datasets, in which
the spheres are centered at regular or nearly regular
intervals; shifted-center datasets, in which the spheres
are centered at positions slightly shifted from those of
the grid datasets, and random-center datasets, where
the centers are random in b-dimensional box.

For each dataset, we calculated the SSQ of the k
sphere centers on the dataset, and we used this value
as an upper bound on the optimal SSQ of any set of
k medians on this dataset. Since each dataset has
relatively little noise (none in the case of the Gaus-
sian dataset), the vast majority of points are in these
relatively tight spheres, so the sphere centers should
be very close to the optimal centers. In a few cases,
LSEARCH or k–Means found better solutions than the
calculated “optimal.” Therefore, for each dataset, we
recorded the best-known SSQ for that dataset; this is
simply the minimum of the best SSQ found experimen-
tally, and the pre-calculated upper bound. Because
both k–Means and LSEARCH are randomized, we ran
k–Means and LSEARCH ten times, to allow for differ-
ent random initializations, and recorded SSQ and CPU
running time for each run of each algorithm.

Because the clusters in the grid datasets (includ-
ing the Gaussian set) are well-spaced and evenly dis-
tributed, k–Means would be expected to perform well
on them; the Gaussian set should give particular ad-
vantage to k–Means since in a Gaussian the conver-
gence rate is fastest. Indeed, on the grid of Gaussians,
k–Means ran, on average, for 298 s, with a standard
deviation of 113 s. LSEARCH ran for 1887 s on aver-
age, with a standard deviation of 836 s. The average
SSQ of k–Means solutions was 209077, with standard

6Our processes never used more than one processor or went
into swap.
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deviation 5711, whereas for LSEARCH the SSQ was
176136 with standard deviation 337.
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Figure 1. k–Means Centers for Dataset J

The shifted-center and random-center datasets ex-
hibit much less symmetry than the grid datasets, and
so k–Means clustering quality was correspondingly
worse than on the grid sets. Because it uses less global
information, k–Means can get distracted by the ran-
dom noise and can inappropriately group two clusters
together, especially when clusters are not evenly spaced
or distributed; by contrast LSEARCH performed con-
sistently well (i.e., with low variance in SSQ) on all
the synthetic datasets. See figure 1 for a comparison
of the best (lowest SSQ) and worst (highest SSQ) k–
Means clusters on one of the random-center sets. Al-
though both solutions are poor, the high-SSQ solution
is considerably worse than the low-SSQ solution. The
best and worst LSEARCH clusters for this dataset were
nearly indistinguishable and had almost the same SSQ.
Figure 2 shows the k–Means and LSEARCH SSQ val-
ues for the random-center datasets, normalized by the
best-known SSQ for each set. The error bars represent
the standard deviations for each algorithm on each set
(also normalized by best-known SSQ).

Small, High-Dimensional Datasets We ran k–
Means and LSEARCH, ten times each, on each of ten
high-dimensional datasets. All ten have one thousand
points and consist of ten uniform-density, randomly-
centered, d-dimensional hypercubes with edge length
two, and five percent noise. The dimensionalities d of
the datasets are: 100 in AC and AD, 125 in AE and
AF, 150 in AG and AH, 175 in AI and AJ, and 200 in
AK and AL.

As before, we ran both algorithms ten times on each
dataset and averaged the SSQs of the solutions found.
Figure 3 shows the average SSQ calculated by each al-
gorithm on each dataset, normalized by division by the
best-known SSQ. The error bars represent the normal-
ized standard deviations. For all datasets, the answer
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Figure 2. k–Means vs. LSEARCH: Random-Center
Datasets

found by k–Means has, on average, four to five times
the average cost of the answer found by LSEARCH,
which is always very close to the best-known SSQ.
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Figure 3. k–Means vs. LSEARCH: High-
Dimensional Datasets

The standard deviations of the k–Means costs are
typically orders of magnitude larger than those of
LSEARCH, and they are even higher, relative to the
best-known cost, than in the low-dimensional dataset
experiments. This increased unpredictability may indi-
cate that k–Means is more sensitive than LSEARCHto
dimensionality.

In terms of running time, LSEARCH is consistently
slower, although its running time has very low vari-
ance. LSEARCH appears to run approximately 3 times
as long as k–Means. As before, if we count only the
amount of time it takes each algorithm to find a good
answer, LSEARCH is competitive in running time and
excels in solution quality.
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These results characterize very well the differ-
ences between LSEARCH and k–Means. Both algo-
rithms make decisions based on local information, but
LSEARCH uses more global information as well. Be-
cause it allows itself to “trade” one or more medians for
another median at a different location, it does not tend
to get stuck in the local minima that plague k–Means.

4.2 Clustering Streams

STREAM K-means Theorem 1 only guarantees
that the performance of STREAM is boundable if a
constant factor approximation algorithm is run in steps
2 and 4 of STREAM. Despite the fact that k-means
has no such guarantees, due to its popularity we did ex-
periment with running k-means as the clustering algo-
rithm in Steps 2 and 4. Our experiments compare the
performance of STREAM LSEARCH and STREAM
K-Means with BIRCH.

Birch compresses a large dataset into a smaller one
via a CFtree (clustering feature tree). Each leaf of this
tree captures sufficient statistics (namely the first and
second moments) of a subset of points. Internal nodes
capture sufficient statistics of the leaves below them.
The algorithm for computing a CFtree tree repeatedly
inserts points into the leaves provided that the radius
of the set of points associated with a leaf does not ex-
ceed a certain threshold. If the threshold is exceeded
then a new leaf is created and the tree is appropriately
balanced. If the tree does not fit in main memory then
a new threshold is used to create a smaller tree. Nu-
merous heuristics are employed to make such decisions,
refer to [32] for details.

STREAM and BIRCH have a common method of at-
tack: repeated preclustering of the data. However the
preclustering of STREAM is bottom up, where every
substep is a clustering process, whereas the precluster-
ing in BIRCH is top down partitioning. To put the
results on equal footing, we gave both algorithms the
same amount of space for retaining information about
the stream. Hence the results compare SSQ and run-
ning time.

Synthetic Data Stream We generated a stream ap-
proximately 16MB in size, consisting of 50,000 points
in 40-dimensional Euclidean space. The stream was
generated similarly to the datasets described in 4.1,
except that the diameter of clusters varied by a fac-
tor of 9, and the number of points by a factor of 6.33.
We divided the point set into four consecutive chunks,
each of size 4MB, and calculated an upper bound on
the SSQ for each, as in previous experiments, by finding
the SSQ for the centers used to generate the set. We

ran experiments on each of the four “prefixes” induced
by this segmentation into chunks: the prefix consisting
of the first chunk alone, that consisting of the second
chunk appended after the first, the prefix consisting
of the concatenation of the first three chunks, and the
prefix consisting of the entire stream.

As in previous experiments, we ran LSEARCH and
k–Means ten times each on any dataset (or CF-tree)
on which we tested them. Since BIRCH and HAC are
not randomized, this repetition was not necessary when
we generated CF-trees or ran HAC. Thus we ended up
with four choices depending on the clustering algorithm
chosen and the method of preclustering.

Synthetic Stream: SSQ
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Figure 4. BIRCH vs. STREAM: SSQ

Synthetic Stream: CPU Time
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Figure 5. BIRCH vs. STREAM: CPU Time

The performance of each ialgorithm was linear both
in error and running time as expected. In summary

• STREAMgave an SSQ of factor 2 to 3 times lower
compared to the corresponding implementation
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with BIRCH that used the same clustering algo-
rithm. The reason for this performance gap was
that the BIRCH CF-trees usually had one “mega-
center,” a point of very high weight, along with
a few points of very small weight; in other words,
BIRCH missummarized the data stream by group-
ing a large number of points together at their
mean.

• STREAMran a factor 2 to 3 times slower than
the corresponding implementation using BIRCH.
BIRCH uses a top down partitioning as preclus-
tering process, while STREAM uses a bottom
up clutering as a preclustering step. The results
demonstrate the effect of more accurate decisions
in STREAM regarding storing the summary stais-
tics.

• STREAMLSEARCH gave nearly optimal quality.
This is natural since in the previous section we
demonstrated that LSEARCH gave near optimal
clustering. The bottom up approach in STREAM
introduces little extra error in the process, and we
have a near optimal answer.

Network Intrusions Clustering, and in particular
algorithms that minimize SSQ, are popular techniques
for detecting intrusions [25, 23]. Since detecting intru-
sions the moment they happen is tantamount to pro-
tecting a network from attack, intrusions are a par-
ticularly fitting application of streaming. Offline algo-
rithms simply do not offer the immediacy required for
successful network protection.

In our experiments we used the KDD-CUP’997 in-
trusion detection dataset which consists of two weeks
of raw TCP dump data for a local area network simu-
lating a true Air Force environment with occassional
attacks. Features collected for each connection in-
clude the duration of the connection, the number of
bytes transmitted from source to destination (and vice
versa), the number of failed login attempts, etc. All
34 continuous attributes out of the total 42 attributes
available were selected for clustering. One outlier point
was removed. The dataset was treated as a stream of
nine 16-Mbyte sized chunks. The data was clustered
into five clusters since there were four types of possible
attacks (plus no attack). The four attacks included de-
nial of service, unauthorized access from a remote ma-
chine (e.g., guessing password), unauthorized access to
root, and probing (e.g., port scanning).

The leftmost chart in Figure 6 compares the SSQ of
BIRCH-LS with that of STREAMLS; the middle chart
makes the same comparison for BIRCH k–Means and

7http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

STREAM k–Means. BIRCH’s performance on the 7th
an 9th chunks can be explained by the number of leaves
in BIRCH’s CFTree, which appears in the third chart.

Even though STREAM and BIRCH are given the
same amount of memory, BIRCH does not fully take
advantage of it. BIRCH’s CFTree has 3 and 2 leaves re-
spectively even though it was allowed 40 and 50 leaves,
respectively. We believe that the source of the problem
lies in BIRCH’s global decision to increase the radius of
points allowed in a leaf when the CFTree size exceeds
constraints. For many datasets BIRCH’s decision to in-
crease the radius is probably a good one - it certainly
reduces the size of the tree. However, this global de-
cision can fuse points from separate clusters into the
same CF leaf. Running any clustering algorithm on
the fused leaves will yield poor clustering quality; here,
the effects are dramatic.

In terms of cumulative average running time, shown
in Figure 6, BIRCH is faster. STREAM LS varies in its
running time due to the creation of a weighted dataset
(Step 1).

Overall, our results point to a cluster quality vs.
running time tradeoff. In applications where speed is of
the essence, e.g., clustering web search results, BIRCH
appears to do a reasonable quick and dirty job. In ap-
plications like intrusion detection or target marketing
where mistakes can be costly our STREAM algorithm
exhibits superior SSQ performance.
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