Lecture 10: Dataflow/Structural Analysis

COS 598C - Advanced Compilers

Bolei Guo
Prof. David August

Department of Computer Science
Princeton University

Basic Block Level Analysis

Where are we?

e Analysis
e Control Flow/Predicate
e Treat basic blocks as a black box
e Only look at branches
e Dataflow
¢ Look inside basic blocks
e What is computed where?

COS598C - Advanced Compilers A Prof. David August

Basic Block Level Analysis

To improve performance of dataflow, process at basic block
level.

e Represent the entire basic block by a single super-
instruction which has any number of destinations and
sources.

¢ Run dataflow at basic block level.
e Expand result to the instruction level.

Example:
p: rl = r2 + 3 -> rl, r2 = r2, r3
n: r2 = ril

e Example:

p: rl = r2 + r3 -> rl, ¥r2 = r2, r3
n: r2 = rl

o For reaching definitions:
OUT[n)| = GEN[n]U (IN[n] — KILL[n))
But IN[n] = OUT'[p]:
OUTn|=GEN[n|U ((GEN[p|U (IN[p] — KILL[p])) — KILL[n))
Which (clearly) yields:
OUT[n|= GEN[n|U (GEN][p] — KILL[n|) U (IN|[p] — (KILL[p]U KILL[n]))

So:
GENIpn| = GEN[n|]U (GEN|[p] — KILLn])

KILL[pn|= KILL[p|U KILL[n|

e Can we do this at the loop or general region level?

COS598C - Advanced Compilers

Prof. David August

COS598C - Advanced Compilers Prof. David August

Other Regions Two approaches to control & data flow analysis

e Lists of instructions - Basic Blocks! . .
Iterative analysis

GEN[pn] = GEN[n]U (GEN[p] — KILLIn]) e Construct CFG
KILL[pn] = KILL[p|U KILLn| e Compute transfer function for each node
e Conditionals/Hammocks e Solve the dataflow equations by iterating over the CFG

GEN|Ir] = GEN[[]U GEN[r]

. . i Structural analysis
KILL[l¥] = KILL{I) N KILL[]

e Decompose CFG into nested control structures
e Compute transfer function for each control structure

e Propagate dataflow information into and through the
control structures starting from the top-level control

e While Loops
GENlJloop] = GEN]]|
KILL[loop] = KILL[]

Try this on an irreducible flow graph... structure
COS598C - Advanced Compilers A Prof. David August COS598C - Advanced Compilers . Prof. David August
Why structural analysis? Classification of control structures — Acyclic regions

e The actual dataflow analysis is faster
e It's easier to update dataflow information incrementally

/ /\
« Makes control-flow transformations easier U
if-then if-then-else

T e Cwm

Lo

block schema case/switch schema proper
region

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Classification of control structures — Cyclic regions An important property of the regions

1 ¢ Single-entry
S e Improper regions always include the lowest common
! dominator of all the entries of its multi-entry strongly-
@l) connected component.
while loop
self loop
J

R improper region schema

natural loop schema

COS598C - Advanced Compilers . Prof. David August COS598C - Advanced Compilers S Prof. David August
Flowgraph reduction Flowgraph reduction example 1

¢ Collapse each control structure into an abstract node, the resulting
flowgraph is an abstract flowgraph.
1 2 - 3
» Apply reductions to the abstract flowgraph, the resulting regions are -
nested.

e Control tree: B3a
e Leaves— basic blocks =B \i/
e Root- an abstract graph corresponding to the original cfg
e Internal nodes — abstract nodes each corresponding to a -
subgraph of the original cfg
5

entrya

lentry|
Bla

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Flowgraph reduction example 1 Flowgraph reduction example 2

[entry] Control tree

{entry, {B1. B2, {B3, {B4, B6}, B5}}, exit} 1 2
T
entry {Bl.B2, {B3, {B4, B6}, B5}} exit 3
/////1:7;;7¢\\\\\\ I#!I
Bl B2 {B3, {B4, B6}, B5} | \
5 Pl

B3 {B4,B6} B5

N
B4 B6
COS598C - Advanced Compilers m Prof. David August COS598C - Advanced Compilers T Prof. David August
Flowgraph reduction algorithm Flowgraph reduction class problem

structural _anal ysis(Q {
r epeat
for (n : DFS_Postorder(Q)
if (nis in an acyclic region)
reduce the region

el se ~
C = (n) 52

for each node m —

— T

if (Opath m~>k->n &&
k->n is a back edge)
C 0= {n
if (Cis a cyclic region)
reduce C

until Gis reduced to a single node
}

COS598C - Advanced Compilers Prof. David August COS598C - Advanced Compilers Prof. David August

Structural dataflow analysis

“if-then” construct — bottom-up pass

2 passes over the control tree
Bottom-up pass:
Construct a transfer function for each node

Top-down pass:

Construct and evaluate dataflow equations that propagate initial
dataflow information into and through each node, using the

functions constructed in the first pass

COS598C - Advanced Compilers e

“if-then” construct — top-down pass

Fit —then = (Finen OFi¢ /v) OFi¢/n

This is more precise if dataflow
values are different along the two
branches, e.g. constant propagation.

Fif —then = (Finen OF¢) UF;

Prof. David August

Prof. David August COS598C - Advanced Compilers T

“if-then-else” construct

INg =Nt _hen

INpen = Ky (IN)

if/N

Fon Fif —then-eise =
(Finen OFi¢ /v) D(Fyse OFit /)

I:if/Y

Firen [fhenl Else Fo .

INg =1N¢ _then-aise
INpen = Fig v (INg)
INgee = Fe/n(iNg)

Prof. David August

COS598C - Advanced Compilers

Prof. David August COS598C - Advanced Compilers

General acyclic region A={B0,B1,..., Bn}

while-loop

BO is the entry node
Each Bi has exits Bi/1, ..., Bi/e with transfer functions
Feija: FBi/ei
For some exit Bi, /e, let P(A Bi,/g) denote the set
of all possible paths from the entry of A to it, the
transfer function for these paths is

R
pOP(A, Bi,/g)
e Forany p=B0/e, Bi,/e, .., Bi,/g 0O P(A Bi,/¢g) ,
Fo = Fai, /e OIOFg; /6 OFgo/e,

F(A, Bi./e) —

COS598C - Advanced Compilers o0 Prof. David August

Proper cyclic region C ={B0, B, ..., Bn}

I:if/Y I:if/N

_ 0
Fatite-toop = Fanite/Nn OFiter

= Fanitern O(Foogy OF\/\,hiIe/Y)*

L INypite = iterD(ir\A/nile—loop)
= (Fooy OFnitery) (Nypite-toop)
INyody = Fatitery (INwhite)

COS598C - Advanced Compilers o Prof. David August

Improper region

e There is a single back edge (Bc/e, BO)

 In the acyclic region resulting from removing the
back edge, construct a transfer function F'c g /)
that corresponds to all possible paths from C's entry
to each exit Bi /g,

e The transfer function for executing C and exiting

from Bi /g is
g 0
Fc. sire) = F(c 8 /e)OFite

=F'c, 8i,/6)9F ‘c.Bcre)

Prof. David August

e Bottom-up pass - the same as acyclic regions
e Top-down pass — the equations are recursive

Fe1-g2-p3 = ((F330F52)+ O((Feg OFg) 0F|33)) OFg;

INg; =1Ng1-p>-B3

iNgg = Figy (iNgy) LRz, (ing;)

COS598C - Advanced Compilers Prof. David August

COS598C - Advanced Compilers

3 ways to deal with recursive equations

Reducible Flow Graphs

e Turn the improper region into a proper one using node splitting.
¢ Evaluate the recursive equations together iteratively.

e For many dataflow problems, non-recursive transfer functions can
be computed.

ing; = ((Faa OF2) O((Fag 0Fgy) OFg)) (ingy)
(((Fag OFs) Did) o((Fgg OFgy) OFg,) (ingy)
((Fas OF&2)” O((Fez 0Fey) OFey)) (iney)
= (((Fa3 OFs2) Oid) o (Fg, OFg;) OFg) (ingy)

4

B i,

COS598C - Advanced Compilers - Prof. David August

Reducible Flow Graphs — Structured Programs

Motivation:

e Structured programs are always reducible programs.

e Reducible programs are not always structured programs.

e Exploit the structured or reducible property in dataflow analysis.
Structures:

e Lists of instructions

e Conditionals/Hammocks

e While Loops (no breaks)

COS598C - Advanced Compilers

Prof. David August

Definition
o A flow graph is reducible iff each edge exists in exactly one class:

1. Forward edges (forms an acyclic graph where every node is reachable from start
node)

2. Back edges (head dominates tail)
Algorithm:
1. Remove all backedges
2. Check for cycles:
e Cycles: Irreducible.
e No Cycles: Reducible.
Think:

e All loop entry arcs point to header.

COS598C - Advanced Compilers o Prof. David August

