Testing Metric Properties

Michal Parnas Dana Ron
The Academic College Department of EE — Systems
of Tel-Aviv-Yaffo Tel-Aviv University
Tel-Aviv, ISRAEL Ramat Aviv, ISRAEL
michalp@mta.ac.il danar@eng.tau.ac.il
Abstract

Finite metric spaces, and in particular tree metrics play an important role in various dis-
ciplines such as evolutionary biology and statistics. A natural family of problems concerning
metrics is deciding, given a matrix M, whether or not it is a distance metric of a certain pre-
determined type. Here we consider the following relaxed version of such decision problems: For
any given matrix M and parameter €, we are interested in determining (by probing M) whether
M has a particular metric property P, or whether it is e-far from having the property. In e-far
we mean that at least an e-fraction of the entries of M must be modified so that it obtains the
property. The algorithm may query the matrix on entries M[i, j] of its choice, and is allowed a
constant probability of error.

We describe algorithms for testing Fuclidean metrics, tree metrics and ultrametrics. Fur-
thermore, we present an algorithm that tests whether a matrix M is an approximate ultrametric.
In all cases the query complexity and running time are polynomial in 1/e and independent of
the size of the matrix. Finally, our algorithms can be used to solve relaxed versions of the
corresponding search problems in time that is sub-linear in the size of the matrix.

1 Introduction

Finite metric spaces, and in particular tree metrics play an important role in various disciplines
such as evolutionary biology and statistics (see for example [20, 10, 13, 5]). A tree metric is defined
by a weighted tree that spans a set of points, where the distance between two points equals the
sum of the weights on the edges along the path between these points. Ultrametrics are a special
case of tree metrics, which are of particular interest. In Ultrametric trees all points correspond to
leaves of the tree, and the tree can be rooted so that the distance from the root to every leaf is
the same. Tree metrics, also known as additive metrics, are especially appealing since they can be
used to model hierarchical structures. For example, in the context of evolutionary biology, a tree
metric can be defined on species, where the weights of the tree edges are determined by the time
elapsed since the species separated.

A natural family of problems concerning metrics is deciding, given a matrix M, whether or
not it is a distance metric of a certain predetermined type.! Specifically, we may be interested in
knowing whether the matrix is a tree metric, an ultrametric, or possibly a FEuclidean metric of some
bounded dimension d (i.e., whether there exists an embedding of the points in the d-dimensional
Euclidean space, whose pairwise distances correspond to the entries of the matrix).

In this paper we study relaxed versions of these decision problems, from within the framework
of property testing. Namely, instead of determining whether M has a certain metric property P
or not, we would like to determine whether it has property P or should be modified significantly
in order to obtain P. More precisely, given query access to an n X n matrix M, and a distance
parameter €, the goal is to determine with high probability whether M has the property P or
whether more than an e-fraction of its entries should be modified so that it obtains the property.
In the latter case we say that M is e-far from having the property. Given this relaxation, we seek
algorithms that are much more efficient than those required for exactly deciding the property. In
particular, we are interested in algorithms that have complexity that is sub-linear in the size of the
matrix, or even independent of this size, and polynomial in 1/e.

Our REsurts. All our algorithms work by taking a uniformly selected sample S from [n] =
{1,...,n}, whose size is polynomial in 1/e (and independent of n). Then the algorithms query M
on entries M|i, j] for pairs of points i,5 € S. In what follows we state the size of the sample S.
The query complexity and running time of the algorithms is at most quadratic in the sample size.

e We show that it is possible to test whether a matrix is an ultrametric using a sample of size
O(log(1/€)/€?).

e The size of the sample sufficient for testing whether a matrix is a general tree metric is
O(log(1/€)/€®) as well.

e The sample size sufficient for testing whether a matrix is a d-dimensional Euclidean Metric is
O(dlog(d)/e).

e We also consider the problem of testing whether a matrix is an approzimate ultrametric. For a
given approximation parameter J, we say that a matrix M is a §-approzimate ultrametric (or
simply a d-ultrametric) if there exists an ultrametric matrix M’ such that for every 7,j € [n],
|Ml[i, j] — M'[i,4]| < 4. For any given approximation parameter J (and for every distance
parameter €), we require that the testing algorithm accept M if it is a d-ultrametric, and reject

'With a slight abuse of terminology, we use the term distance while actually we mean pseudo-distance. Namely,
the properties of symmetry, triangle-inequality, and non-negativity are obeyed, but we do not necessary require that
M[i, j] > 0 for every ¢ # j. As we later show, this relaxation is inevitable for the problems we solve.

M with high probability if it is e-far from from being a ¢ - J-ultrametric (where ¢ is a fixed
constant). The sample used is of size O(log(1/¢€)/€®).

Our testing algorithms can be used to solve relaxed versions of the related search problems of all
properties presented above, in time linear in n and polynomial in 1/e. For example, in the case of
tree metrics, we can construct a tree that agrees with M on all but an e-fraction of its entries. Note
that these procedures are actually sub-linear in the size of the matrix, and in particular observe
only a small fraction of the matrix.

TECHNIQUES. All our results have a common thread. As noted previously, our algorithms all take
a uniform sample of points from [n]. Specifically, the algorithms select two sub-samples, where
each serves a different role. The first sub-sample is used to induce certain constraints on almost all
entries in the matrix. These constraints are always satisfied in case the matrix has the property.
The heart of our proofs is in showing that in case the matrix is far from having the property, then
necessarily there are many entries in the matrix that violate the constraints induced by the first
sub-sample. The second sub-sample is then used to provide witnesses to these violations.

In order to prove that the first sub-sample induces such constraints, we view it as being selected
in phases. Each phase either adds more constraints, or contains itself a witness to the fact that the
matrix does not have the tested property.

It is interesting to note that a similar proof structure has been useful in very different contexts
of property testing (e.g., graph properties [14] and clustering [2]), and so it is possible that some
unifying approach may be found.

CONTEXT AND RELATED WORK. Property testing was first defined and applied in the context of
algebraic properties of functions [19], and has since been applied in various contexts such as proper-
ties of graphs (e.g., [14, 15, 3]), strings (e.g., [4]), clusters of points [2], and geometric objects [11, §].
For a survey see [18].

The research on metric spaces is clearly too rich and broad to cover within the limits of this
introduction. Here we only mention the most closely related results.

Finding a tree that corresponds (or approximately corresponds) to a given distance matrix, is
usually referred to as the Numerical Taronomy Problem. This problem was first explicitly stated
in [6]. Waterman et. al. [22] showed that if a given matrix M is a tree metric, then there is a
unique tree that corresponds with M, and it can be constructed in time O(n?). Culberson and
Rudnicki [7] describe an algorithm that has a running time of O(knlog; n) when the degree of
the tree is bounded by k. The problem of constructing an ultrametric tree for a given matrix (if
such a tree exists) is clearly a special case of the above, and there are simpler procedures (though
not more efficient in general) for constructing such a tree (e.g. [16]). Deciding whether M is a
tree metric or ultrametric can clearly be done by trying to construct the tree. To the best of our
knowledge, no faster decision algorithm is known. For d-dimensional Euclidean metrics, a decision
can be performed in time polynomial in the size of the matrix, by checking that a related matrix
is a positive semidefinite matrix of rank at most d.

When the matrix M is not a tree metric (or an ultrametric), then we may consider the problem
of finding a tree metric (ultrametric) M’ such that |M — M’||,, is minimized for a given L, norm.
It was shown by Day [9] that this problem is NP-hard for the L; and Lo norms, for both general
tree metrics and ultrametrics. When the Ly, norm is considered, then the problem can be solved
in time O(n?) for ultrametrics [12, 17]. However, in the case of general tree metrics the problem

is also NP-hard for the Ly, norm [1]. The problem remains NP-hard even when we are given a
matrix M for which there exists a tree metric M’ such that |M — M'||,, < J, and we are required
to find a tree metric M" such that |[M — M"||o < 26 [1]. On the bright side, it should be noted
that it is possible to find in time O(n?) a tree metric M" such that |[M — M"||,, < 36 [1].

Recall that for both exact search problems (for ultrametrics and general tree metrics), and for
approximate ultrametrics (where the approximation is with respect to the Lo, norm), we solve
relaxed versions of these problems in time linear in n (and polynomial in 1/¢). We believe that our
results can be extended to deal with the approximation of general trees as well.

ORGANIZATION. In Section 2 we provide the preliminaries for this work. In Section 3 we discuss
ultrametrics, in Section 4, approximate ultrametrics, and in Section 5, general tree metrics. Testing
Euclidean metrics is considered in Section 6. Finally, in Section 7 we show our lower bounds.

2 Preliminaries
In all that follows we consider matrices whose entries are rational numbers.

Definition 2.1 (Distance to Having a Property) Let P be a property of matrices, let M be
an n xXn matriz, and let 0 < e < 1. The matriz M is e-far from having property P, if the minimum
fraction of M ’s entries (among all n? entries) that should be modified so that M obtains property
P is greater than €. Otherwise, M is e-close to having property P.

Definition 2.2 (Testing Properties of Matrices) A testing algorithm for a matriz property P
is given a distance parameter € and may query M on entries M[i, j] of its choice. If M has property
P then the algorithm should accept, and if M is e-far from having property P, then the algorithm
should reject with probability at least 2/3.

The above definition requires that the algorithm have a one-sided error probability. In general,
property testing algorithms may be allowed a two-sided error. However, since all our algorithms
have a one sided error, we shall use this more restricted definition.

The matrix properties we shall be interested in are all properties of distance or pseudo-distance
matrices.

Definition 2.3 (Distance Matrices) We say that an nxn matriz M is a pseudo-distance matriz
if the following conditions hold:

1. For every i,j € [n], M[i,j] > 0, where M[i,i] = 0 for every i (non-negativity).
2. For every i,j € [n], M[i,j] = M[j,i] (symmetry).
3. For every i, j,k € [n], M[i,j] < M[i,k] + M|[k, j] (triangle inequality).
If Item 1 is strengthened to require that M[i,j] > 0 for every i # j, then M is a distance matriz.

With a slight abuse of terminology, we shall sometimes refer to M as being a metric or pseudo-
metric.2 As we shall see, in some cases the additional requirement that M{[i, j] be strictly positive

*Formally, a (pseudo) metric is a pair (X,d) where X is a set and d : X x X — R>¢ is a (pseudo) distance
function. Hence, if M is a (pseudo) distance matrix, then ([n], dar), where dar(4, 7) = M[i, j], is a (pseudo) metric.

for ¢ # j, makes the task of testing significantly harder. In particular, in these cases, without this
requirement there exists a testing algorithm having complexity poly(1/e¢) (that is, independent of
n), while adding the requirement implies a lower bound of Q(y/n) (for a constant).

In what follows we assume for simplicity that M obeys the first two conditions in the above
definition of pseudo-distance matrices. We next argue that this assumption can be made without
loss of generality.

Proposition 1 Let A be a testing algorithm for a property P of pseudo-distance matrices, whose
correctness relies on M obeying conditions (1) and (2) in Definition 2.3. Then there exists a testing
algorithm A’ for the property P whose correctness does not rely on these assumptions. Furthermore,
if Qa(€) and Ta(e) are the query complezity and running time of A, respectively, then the query
complezity and running time of A" are O(Qa(€e/2) + 1/€)) and O(Ta(e/2) + 1/€)), respectively.

Proof: First assume that A is such that its failure probability is at most 1/6 instead of 1/3 (since
this can easily be achieved by running the algorithm several times and taking the majority output).
Algorithm A" will start by taking a uniform sample of 6/¢ pairs of indices i,j € [n], and checking
whether (i) M[i,j] > 0 (where M[i,5] = 0 if i = j). (ii)) M[i,j] = M][j,4]. If any of the pairs
selected does not satisfy either (i) or (ii) then A’ rejects. If the total number of pairs i,j € [n] that
do not satisfy either (i) or (ii) is greater than $n* then the algorithm will select such a pair with
probability at least 1 — (1 — %)6/6 > 1—e73 > 5/6 and reject. On the other hand, if M has property
P, and thus in particular is a pseudo-distance matrix, then no such pair exists.

Thus, assume that the number of pairs of indices in [n] X [n] that do not satisfy either (i) or
(ii) is at most £n?. Consider a matrix M’ that differs from M only on those indices, and satisfies
(i) and (ii) for all 4,j. More precisely: For every i € [n], M'[i,i] = 0; For every pair i # j such
that M[i, j] < 0 we set M'[i, j] to some arbitrary non-negative value. For every pair i,j such that
M[i, j] # M[j, 1), we set M'[i, j] = M'[j,i] = M[i, j]. Since M and M’ differ on at most §n? entries,
if M is e-far from having property P then M’ is §-far from having property P.

Now A’ applies A with the distance parameter set to §. For each entry M[i, j] that A observes,
A" also checks that (i) and (ii) are satisfied. If for any entry either (i) or (ii) is not satisfied, then
A’ rejects. Otherwise, it outputs the accept/reject decision of A.

Since for every M that has property P, algorithm A always accepts, the same is true for A’.
On the other hand, if M is e-far from having property P, then for M’ as defined above, algorithm
A should reject M’ with probability at least 5/6. But this directly implies that A’ rejects M with
probability at least 5/6 as well. W

3 Testing Ultrametrics

In this section we present an algorithm that tests whether a given matrix M is an ultrametric. Some
of the ideas introduced in this section serve as a basis for our results in the next two sections. Here
we assume that M is actually strictly positive everywhere except on its diagonal. This assumption
can be made without loss of generality by a slight variant of Proposition 1. We start with a few
definitions.

Let T be a tree with positive weights on the edges. We view the weight of each edge as its
length. The distance between two nodes 7 and j in T is defined as usual as the sum of the weights

on the path from 7 to j. This distance will be denoted by T'(i, 7). For every node i, T'(,14) is defined
to be 0.

Definition 3.1 (Ultrametric Trees) We say that a tree T with positive weights on the edges is
an ultrametric tree if the following holds:

1. T 1is rooted and the distance between every leaf and the root is the same fized value.

2. All internal nodes in T have at least 2 children.

Definition 3.2 (Ultrametrics) We say that an n X n matriz M is an ultrametric if there exists
an ultrametric tree T for which the following holds:

1. There exists a 1-to-1 mapping ¢ from [n]| onto the leaves of T'.

2. For any two leaves 1, j in the tree, T'(¢(3), $(j4)) = M]3, j].

With a slight abuse of notation, we shall write T'(7, j) instead of T'(¢(%), ¢(7))-

The following fact is sometimes used as an alternative definition for ultrametrics, and it will
assist us in our proofs.

Fact 1 (The Three Points Condition) A metric is an ultrametric if and only if for every i, j, k,
MTi, j] < max{M[i, k], M[j, k]} .

In particular this implies that for every i, j and k, if M[i, k] > M|[j, k] then M][i,j] = M[s, k].

Since our algorithm will try to construct a tree on a subset of points in [n], the following
definition will be useful.

Definition 3.3 (Consistent Trees) For a given matriz M and a subset U C [n], we say that
an ultrametric tree Ty is consistent with M on U if for every i,j € U, Ty(i,j) = M[i,j]. When
U = [n] we simply say that T is consistent with M.

3.1 Constructing Ultrametric Trees

It is well known that if M is an ultrametric then there exists a unique ultrametric tree T that is
consistent with M. Furthermore, such a tree can be found efficiently (see for example [16]).

Here we describe an iterative procedure for constructing an ultrametric tree that is consistent
with M on a given subset of [n] (assuming that such a tree exists). The presentation of this proce-
dure will aid us in describing and analyzing our testing algorithm. For the sake of the presentation
we assume that the given subset is {1,...,s}.

Ultrametric Tree Construction Procedure
Input: an n X n matrix M; a subset {1,...,s} of indices.

1010 10
10 10 10 4 4

QU i WO N
N
o

Figure 1: Construction of an ultrametric tree that is consistent with the accompanying matrix (which is
symmetric and 0 on the diagonal). In the first stage 1 and 2 are put at equal distance 4 (half the distance
between them) from the root. When 3 is added, it is at distance greater than 8 from 1, and so a new root is
created. When 4 is added, the closest point is 3, and the point of departure of 4 is at distance 1 from 3 on
the path between 3 and the root. Finally, 5 is closest to 3 as well, and its point of departure is at distance
3 from node 3.

1. Initialize U = {1,2} and let Ty consist of a root r, and two leaves, 1 and 2 that are at equal

. M][1,2
distance [2’] from r.

2. For j=3,...,s

(a) TUU{]} — Add-POint(j,TU, M)
(b) U« U U {j}.

Procedure Add-Point
Input: an n X n matrix M; an index 7, and an ultrametric tree Ty that is consistent with M on
U={1,...,j—1}

1. Let k, 1 < k < j be any point for which M4, k] is minimized.

2. If M[j,k] > 2-Ty(r,k) (where r is the root of Tyy), then create a new root, add an edge of

length M between the new root and the new leaf j, and connect the old root of Ty to the

MLj,k]_?TU(T’k)

new root by an edge of length . Let the new root now be called r.

3. Otherwise, either (i) there exists a node p in Ty on the path from k to the root r such
that Ty (k,p) = M, or (ii) there exists an edge (u,v) on the path from & to r such that

Ty (k,u) < M < Ty(k,v). In case (ii), replace the edge (u,v) with two edges (u,p) and

(p,v) so that the distance from k to p equals M
new leaf j having length M

. In either case add an edge from p to a

We refer to the node p defined in Step 3 of the procedure Add-Point as the departure point of
j from Ty. If j causes the creation of a new root (Step 2), then its departure point is defined to be
the previous root. For an illustration of the above construction see Figure 1.

Lemma 3.1 If M is an ultrametric, then Ty as constructed in the Ultrametric Tree Construction
Procedure, is consistent with M on U.

Proof: We prove the lemma by induction on j. The base case, j = 2, is straightforward. Let
U ={1,...,j — 1} and assume by the induction hypothesis that Ty is consistent with M on U for
j—12> 2. We show that after the addition of j to the tree, Ty, is consistent with M on UU{j}.

Note that all distances in Ty (5 between pairs of points that are different than j, are exactly
as in Ty. By construction, Tyyy;y(k,j) = M[k, j]. For any i € U such that i # k, we consider the
following three cases:

1. M[k,t] > M|k, 7]: In this case, since M is an ultrametric, we have that M[j,i] = M|k, 1].

Let p’ be the least common ancestor of k and 4, so that Tyy;(i,p") = % By construction
of the tree,
Tyujy(4,i) = Tyugiy(4,p) + TUU{j}(pap,) + TUu{j}(plai)
 Mlkg) (M) M) | Mk
B 2 2 2 2
= Mlk,i
= Mlj,i] (1)

2. M|k,i] < M|k,j]: Inthis case it must hold that M[j,i] = M|k, j], and a similar calculation
to the one in the previous item shows that Ty (4,4) = M[k, 5], and so Ty, (4, 1) = M3, 1]
as required.

3. M[k,i] = M|k, j]: Here we only know that M[j,i] < M[k, j], but since k& was chosen to
be closest to j in Ty, it must be that M[j,i] = M|k, j]. Here the construction ensures that

Tyugy () = Tuugsy (s k) and so Tyygy(5,6) = M, dl.
|

3.2 Testing Ultrametrics

As noted above, for any ultrametric M and subset U C [n], there is a unique tree Ty that is
consistent with M on U. While the pairwise distances between points in [n]\ U and points in U do
not uniquely determine the position in the tree of every point in [n] \ U, a small sample of points
can be used to construct a “scaffold” tree that induces certain constraints on all other points. In
case M is an ultrametric then these constraints are always obeyed. We shall prove that if M is
e-far from being an ultrametric then with high probability over the choice of the sample, there are
many points (or pairs of points) that do not obey the constraints induced by the scaffold tree. To
this end we first need to introduce a few definitions.

For a subset U C [n], let Tty be an ultrametric tree whose leaves are associated with the points
in U. We refer to Ty as a scaffold. We start by considering how a scaffold that is consistent with
M on U restricts the distances of a point j ¢ U to the points in U.

Definition 3.4 (Consistent points) Let Ty be an ultrametric tree that is consistent with M on
U. We say that a point j ¢ U is consistent with Ty, if after adding j to Ty by applying the procedure
Add-Point(j, Ty, M), the resulting tree Tyugjy in an ultrametric tree. Otherwise, j is inconsistent
with Ty. The set of points in [n] \ U that are consistent with Ty is denoted by T'y.

If M is an ultrametric, then I'y = [n] \ U for every U. Hence, a point j ¢ U that is inconsistent
with Ty provides evidence that M is not an ultrametric. Since Ty is uniquely defined given U, we
can refer to points as being consistent or inconsistent with U (instead of Ty).

We now show that the scaffold also restricts the distances between pairs of points that do not
belong to U. We first introduce the notion of a partition induced by U.

Definition 3.5 (The scaffold partition) Let U C [n] be such that there ezists an ultrametric
tree Ty that is consistent with M on U. For each point j € I'y, consider all its distances to points
in U (according to M). Then two points belong to the same class in the partition Py of Ty, if all
their pair-wise distances to points in U are the same.

For an illustration of the partition see Figure 2.

Figure 2: An illustration of the partition induced by a scaffold. For example, the points in C; are all at
distance 6 from 1, at distance 8 from 2, and at distance 10 from points 3, 4 and 5. The scaffold distance
between every i € Cy and j € C> is 8.

Observe that for any class C of the partition Py, all points in C have the same point of departure
from Tyy. Furthermore, with the exception of the points whose point of departure is the root of Ty,
if ¢+ and j have the same point of departure from Ty, then they are in the same class. Also observe
that if M is an ultrametric, then each class C corresponds to a subtree in the ultrametric tree T’
that is consistent with M.

Definition 3.6 (The scaffold distance Dy) Let Ty be an ultrametric tree that is consistent with
M on U. Consider (as a mental experiment) adding all points in [n] \ U to Ty by applying the
procedure Add-Point(j, Ty, M) to all points j ¢ U in parallel, and let the resulting tree be 1/’5.3
Then, let Dy (-,-) be the distance induced by TB (which is, by definition, an extension of the distance
induced by Ty on the pairs of points in U).

It is easy to verify that if M is an ultrametric then for every pair of points ¢, j that belong to
different classes of Py, Dy (3,j) = M|i, j] (since adding ¢ and j to Ty sequentially, and in parallel
results in the same tree). Similarly, for every pair of points %,j that belong to the same class,
MTi, j] < Dy (i, 7).

Therefore, if one of the above is violated for a pair of points i, € 'y, then we have evidence
that M is not an ultrametric. This observation motivates the following definition.

3To be a little more precise, let B be the maximum value in M, and consider first adding to U a fictitious point
x whose distance from all points is greater than B. If we now consider adding all points in [n] \ U to Tyyg,) then
there is never a need to create a new root, and the addition process is well defined. We can now remove the point x
from the tree, and let the resulting tree be Ty. Also note that by our assumption that M[i, j] > 0 for every i # j, a
point j cannot be added in the same place in the tree as an existing point in U.

Definition 3.7 (Violating pairs) Let Ty be an ultrametric tree that is consistent with M on U.
A pair of points i,j € Ty are said to be a violating pair with respect to Ty, if either (1) i and j are
in different classes in Py and M[i, j] # Dy(i,37), or (2) i and j belong to the same class in Py and
M[Z’]] > DU(Za])

As noted above, if M is an ultrametric, then there are no inconsistent points and no violating
pairs with respect to Ty, for any subset U. We shall show that if M is e-far from being an
ultrametric, then with high probability over the choice of a sufficiently large sample U, either there
are many inconsistent points or many violating pairs with respect to 1.

We are now ready to present our testing algorithm.

Algorithm 1 Testing Algorithm for Ultrametrics

1. Uniformly and independently select s = O(log(1/€)/€®) points from [n]. Denote the set of
points selected by U.

Construct a scaffold tree Ty as described in the Ultrametric Tree Construction Procedure.
If for any two points i,j € U, Ty(3,7) # M][i, j] then reject.
Uniformly and independently select m = O(1/¢€) pairs of points in [n].

If any of the points selected in Step 4 is inconsistent with Ty then reject.

S & e

Partition the 2m points selected in Step 4 into classes according to the partition Py induces
by the scaffold. If any of the pairs is a violating pair then reject.

7. If no step caused rejection then accept.
Theorem 2 Algorithm 1 is a testing algorithm for ultrametrics.

Note that whenever the algorithm rejects then it provides evidence that M is not an ultrametric.

As a corollary of Theorem 2 we get:

Corollary 3 Let the “natural” testing algorithm be the algorithm that simply selects a uniform
sample of s +2m = O(log(1/€)/e3) points from [n] (where s and m are defined as in Algorithm 1),
and accepts if and only if there is an ultrametric tree consistent with M on the sample. Then the
natural algorithm is a testing algorithm for ultrametrics.

As discussed previously, if M is an ultrametric then it is always accepted. We thus assume
from now that M is e-far from being an ultrametric, and strive to show that it is rejected with
probability at least 2/3. Before embarking on the proof of this part of Theorem 2, we try and
gain intuition by considering the following special case. In order to describe it we introduce the
following definition.

Definition 3.8 (Separated points) Let U C [n]| be such that there exists an ultrametric tree Ty
that is consistent with M on U. A pair of points i,j € I'y are said to be separated with respect to
U if they belong to different classes of the partition Py. Otherwise, they are non-separated.

Suppose that the initial sample U C [n] is such that the number of non-separated pairs of points
in 'y is at most §n2. We claim that in this case if M is e-far from being an ultrametric, then either
there are more than g£n inconsistent points, or there are more than §n2 violating pairs with respect
to Ty. This would cause the algorithm to reject with high probability either in Step 5 or Step 6 of
the algorithm. To see why the claim is true, let us define a matrix M’ such that M'[i, j] = Dy (i, 7)
for every 4,5 € [n]. Thus, M’ is an ultrametric by definition (as it is defined by the ultrametric
tree 1/15) However, it is not hard to verify that M’ and M differ on at most en? entries (at most
§n2 entries due to non-separated pairs, at most §n2 due to violating pairs, and at most §n2 pairs
of points in which at least one of the points is inconsistent with 7;;). But this contradicts our
assumption on M.

Roughly speaking, this scenario suggests that we gain from separating points into different
classes. This motivates the following definition.

Definition 3.9 (Separators) We say that a point k is a separator for a pair of points i,7, if
MTi, k] # M[j, k].

Thus, a pair of points in I'yy are separated with respect to U (as defined in Definition 3.8), if and
only if they have a separator in U. Notice that if M is an ultrametric then a point k£ can separate
only pairs of points 7, j that belong to the same class as k.

Definition 3.10 (Effective Separators) We say that point k is an «-effective separator with
respect to U, if the number of pairs of points in I'y that are not separated with respect to U but are
separated with respect to U U {k}, is at least (an)?.

By the above definition, the addition to U of a point £ € T'y that is an a-effective separator with
respect to U, has the following effect. For at least (an)? pairs of points in 'y, either both points
in a pair are in I'yyy(x) and are now separated by U U {k}, or at least one of the points in the pair
is not in I'yyyy) (that is, it is inconsistent with Tys). In either case, the number of non-separated
pairs of consistent points decreases by at least (an)?.

We shall view the sample U as being selected in phases. As we prove more formally subsequently,
as long as there is a sufficient number of a-effective separators with respect to the sample selected
so far, then with high probability a new separator is selected in the next phase, and separates
many pairs of points. However, what if there are only a few effective separators with respect
to the sample selected so far, but there are still many non-separated pairs? In this case we can
prove the following lemma concerning the distances between points that belong to the same class
(non-separated pairs).

Lemma 3.2 Let C C [n]\ U be a class in Py such that there are at most fn points in C that
are a-effective separators with respect to U. Then there exists an ultrametric (star shaped) tree Te
such that for at most (26 + 3a)n - |C| of the pairs i,5 € C, we have Tc(3,75) # M1, j].

In order to prove Lemma 3.2 we shall need the following technical claim.

Claim 3.3 Let g < n be an integer, QQ a q X q real valued matriz and 0 < ¢,0 < 1. Suppose that
for at least g — ¢n of the rows i in Q, there exists a value r; such that for at least ¢ — On of the

10

entries Qli, j] we have Q[i, j| = r;, and that an analogous claim holds for the columns of Q. Then
there exists a single value, denoted val, such that for all but at most (2¢ + 30)n - q of the entries

Qlz, j], we have Q[i,j] = val.

Proof: Foreachi € {1,...,q}, let r; (¢;) denote the most common value in the ’th row (column)
in Q. We say that a row (column) is §-pure if all but at most #n of the entries in the row (column),
have value 7; (¢;). By the premise of the lemma, all but at most ¢n of the rows (columns) are §-pure.
We say that entry Q[i, j] is row-representative, if row i is -pure and Q[i, j] = r;. Define a column-
representative entry analogously. Then the number of entries that are not row-representative is at
most ¢n-q+q-0n = (¢+0)-g-n. Similarly, the number of entries that are not column-representative
is at most (¢ +0) - ¢-n. Hence, the number of entries that are both row-representative and column-
representative is at least g2 — 2(¢ + 6) - ¢ - n.

Now, consider any row 7 that has at least ¢g—2(¢+ 0) -n entries that are both row-representative
and column-representative. Such a row must exists since this is the average number per row. Then
the total number of entries in @@ that do not have value r; is at most 2(¢ +60) -n-q+q-6n =
(2¢ + 30)n - g (where the first term is due to all entries in columns j such that Q[i, j] is either not
row-representative or not column-representative, and the second term is due to entries that are
not column-representative for columns j such that @[, 7] is both row-representative and column-
representative). W

Proof of Lemma 3.2: Consider the sub-matrix Mx of M that is induced by the class C, and
let 7 € C be a point that is not an a-effective separator with respect to U. By definition, this
means that in the 2’th row of M, the number of pairs of entries that contain a different value is
at most (an)?. We claim that this implies that there exists a value r; such that for at least ¢ — an
of the entries M¢[i, j] in the i’th row we have M¢[i,j] = r; (and that an analogous statement
holds for the columns of M¢). The claim trivially holds for ¢ < an, thus let ¢ > an. Assume,
contrary to the claim, that for every value in the i’th row there are less than ¢ — an entries with
that value. Then for each 1 < j < ¢, there are more than ¢ — (¢ — an) = an entries M¢[i, £] such
that Mc[i, j| # Mc[i,¢]. Hence the total number of such pairs of different entries in row % is greater
than ¢ - an which is greater than (an)?, contradicting our initial assumption on the i’th row.

Since there are at most Sn points in C that are a-effective separators, we can apply Claim 3.3
with Q = M¢, ¢ = B, and 8 = a. Thus, there exists a value val, such that for all but at most
(28 + 3a)n - |C| of the entries in My we have M¢li,j] = val. Note that since we assume that
MTi, j] > 0 for every i # j then val > 0. Define the sub-tree T to be a star-shaped tree, whose
leaves are the points in C, and the distance of each leaf from the root of T¢ is val/2. The lemma
follows. W

Proof of Theorem 2: As noted previously, the correctness of the algorithm for an ultrametric
M directly follows from the algorithm. We thus focus on the second part of the theorem, and
assume that M is e-far from being an ultrametric.

Let a = {5, and 8 = §. We view the sample U as being selected in p = 1 /o? phases, where

In(6p) points is selected. If in any phase the sample

in each phase an independent sample of s’ =
contains a point that is inconsistent with the previously selected points, then clearly the algorithm
will reject in Step 3 (as it will not be able to construct an ultrametric tree Ty that is consistent
with M). Otherwise, consider any fized phase for which the number of a-effective separators with

respect to the sample selected so far is at least Sn. The probability that none of these separators

11

is selected is at most .
1-8)" <e P < —.

Thus, the probability that in some phase in which the number of a-effective separators (with respect

to the sample selected so far), is at least Sn, no separator is selected, is at most 1/6.

At the start of the first phase (where no sample has yet been selected), the total number of non-
separated and consistent pairs of points is n(n —1). In each phase where an a-effective separator is
selected, the number of non-separated and consistent pairs of points decreases by at least (an)?. Tt
follows that the number of such phases is bounded by 1/a?. Hence, with probability at least 5/6,
after p = 1/a? phases, either there is no tree Ty that is consistent with M on U, or there are at
most An a-effective separators with respect to U.

Claim. Let U C [n] be such that there exists an ultrametric tree Ty that is consistent with M on
U, and the number of a-effective separators with respect to U is bounded by Bn. If M is e-far from
being an ultrametric, then there are either more than ¢n inconsistent points with respect to U, or
more than inQ violating pairs with respect to U.

The above claim implies that with probability at least 5/6 over the choice of the m = % pairs
of points in Step 4 of the algorithm, the algorithm rejects either in Step 5 or in Step 6. Taking
into account the probability of at most 1/6 that the number of a-effective is greater than Sn, the
second part of the theorem follows.

Thus, to conclude the proof of the theorem we prove the claim. Assume, contrary to the claim,
that there are at most {n inconsistent points, and at most inQ violating pairs. We next show
that we can then define an ultrametric M’ that disagrees with M on at most en? entries, thus
contradicting the assumption on M.

1. For every i,j € U: M'[i,j] = Dy(i,j) (= M[i,j]). Similarly, for every i € U and j € T'y:

2. For every 4,7 € I'y:

(a) If i and j are separated then M'[i,j] = Dy (i,). Hence, among these pairs, M’ and M
only differ on the violating pairs (that belong to different classes).

(b) If 4 and j are non-separated then M'[i,j] = min{Dy(s,j),Tc(%,5)}, where C is the
class they both belong to and T¢ is the tree guaranteed by Lemma 3.2. (Taking the
minimum among the two values is essential in order that M’ be an ultrametric.) Here
M' may differ from M on violating pairs (that belong to a common class, for which
MTi, j] = Tc[i, j] > Dy (i, j)), and on the at most (268 + 3a)n|C| < $n|C| pairs of points
i,7 € C such that M[i,j] # Tc (3, 7)-

3. If either ¢ ¢ 'y or j € T'y: then M'[i,j] = Dy(i,j), which may differ from MT[i, j]. Since
there are at most n inconsistent points, among these pairs there are at most inQ on which
M' and M differ.

The total number of entries on which M’ and M differ is hence at most
€

4n2 + Z %n|C\ + inz < en?

CePy

12

where the first term is due to the violating pairs, the second term is due to those pairs ,j that
belong to the same class C but for which M[i, j] # T¢(4,7), and the third term is due to the pairs
containing inconsistent points. W

3.3 Constructing Almost Consistent Ultrametric Trees

Suppose that M is an ultrametric. Then our analysis can be used to imply that with high probability
we can construct in time n - poly(1/¢) an ultrametric tree 7" that disagrees with M on at most an
e-fraction of its entries. Details follow.

By definition, if M is an ultrametric, then for every subset U C [n], all points in [n] \ U are
consistent with Ty, and all pairs of points are non-violating. Note that given a set U, we can
partition all points in [n] \ U into the classes of the partition Py in time O(n - |U|). As argued in
the proof of Theorem 2, with high probability over the choice of U (where |U| = ©(1/€?)), there
are at most Sn a-effective separators with respect to U (where o and 3 are as in the proof of the
theorem). By Lemma 3.2, this implies that for every class C there exists a star shaped (sub-)tree
Tc such that for at most (28 + 3a)n - |C| of the pairs i,j € C, we have T¢(i,5) # MJi,j]. By
sampling from each class we can find, with high probability, the height of the star-shaped tree T
and construct it. Following the argument in the proof of Theorem 2, it can be shown that the
resulting tree disagrees with M on at most en? entries.

Similar results can be obtained in the same manner for the other properties we test.

4 Testing Approximate Ultrametrics

In this section we extend the results from Section 3 to testing approzximate ultrametrics. Namely,
here we relax the condition of acceptance to matrices M that may not be exactly ultrametrics, but
that are close in the Lo norm to an ultrametric.

Definition 4.1 (6-Ultrametrics) A matriz M is a é-ultrametric if there exists an ultrametric M’
such that |M — M'||» < 6.

Below we describe a testing algorithm that for any given matrix M and parameters § and e,
accepts M if it is a d-ultrametric, and rejects M with probability at least 2/3 if it is e-far from
any cd-ultrametric (for some fixed constant ¢). The structure of the algorithm and its analysis
are similar to those for the exact case (0 = 0). The algorithm tries to find evidence to M not
being a J-ultrametric. As in the exact case, showing that every J-ultrametric passes the test will
be relatively easy (though not as straightforward). Showing that a matrix M that is e-far from any
co-ultrametric is rejected with high probability, will follow the same lines as in the exact case, but
will be somewhat more involved.

We start by adapting the definitions from the exact case.

Definition 4.2 (§-Consistent) An ultrametric tree Ty is d-consistent with a matriz M on U, if
for every i,5 € U, |Ty(i,7) — M[i,j]| < 6. In case U = [n], we simply say that T is §-consistent
with M.

13

Farach, Kannan and Warnow [12] give a polynomial-time algorithm for constructing a tree T that
is d-consistent with a given §-ultrametric M.

Definition 4.3 (7-Consistent point) Let Ty be an ultrametric tree that is 6-consistent with an
n xn matriz M on U C [n]. We say that point j ¢ U is n-consistent with Ty if the following holds.
Let T be the tree resulting from adding j to Ty by applying the procedure Add-Point(j, Ty, M)
(described in Subsection 3.1). Then we ask that for every k € U, |T(j, k) — M[j,k]] <n. Let T},
denote the set of all n-consistent points in [n]\ U.

Definition 4.4 (A-Separators) Let M be an n X n matriz and i,j € [n]. A point k € [n] is called
a A-separator for i and j if |M[i, k] — M[j,k]| > A.

If i and j have a A-separator in the set U, then they are \-separated by U.

Definition 4.5 (Effective Separators) We say that a point k € [n] \ U is an (a, \)-effective
separator with respect to U C [n], if the number of pairs of points in [n] \ U that are \-separated by
U U {k}, and are not \-separated by U, is at least (an)?.

Definition 4.6 (Violating pairs) Let M be an n X n matriz and i,5 € [n]\ U. We say that i
and j are a violating pair with respect to U C [n], if either:

1. There ezists a 25-separator k € U such that |M|[i,j] — max{M][i, k], M[j, k]}| > 20;
2. For some k € U (that is not necessarily a 2§-separator), M[i, 5] > max{M[i, k|, M[j, k]}|+24.

Algorithm 2 Testing Algorithm for Approximate Ultrametrics

1. Uniformly and independently select s = ©(log(1/€)/e3) points in [n]. Denote the set of points
selected by U.

2. Construct a scaffold tree Ty that is 6-consistent with M on U using the algorithm in [12]. If
this is not possible — reject.

3. Uniformly and independently select m = ©(1/€e?) pairs of points in [n)].
4. For each point selected in Step 3, check whether it is 36-consistent with Ty. If not — reject.

5. For each pair of points selected in Step 3, check whether they are a violating pair, and if so —
reject.

6. If no step caused rejection then accept.

Theorem 4 Algorithm 2 accepts every matriz M that is a §-ultrametric, and rejects with probability
at least 2/3 any M that is e-far from being a cé-ultrametric for some fized constant c.

The constant ¢ that our analysis implies, is 84. However, we believe that a tighter analysis is
possible.

14

Corollary 5 Let the “natural” testing algorithm be the algorithm that simply selects a uniform
sample of O(1/€) points from [n] and accepts if and only if it is possible to construct a tree that
is d-consistent with M on the sample. Then this algorithm accepts every matriz M that is a J-
ultrametric, and rejects with probability at least 2/3 any M that is e-far from being a cd-ultrametric
for some fized constant c.

We shall prove Theorem 4 via a sequence of lemmas. The first two lemmas are used to prove
the first part of the theorem, and the remaining lemmas to prove the second part of the theorem.

Lemma 4.1 Let M be a d-ultrametric, and let Ty be an ultrametric tree that is §-consistent with
M on U C [n]. Then every point j ¢ U is 3-consistent with Ty.

Proof: Since M is a d-ultrametric, there exists an ultrametric M’ such that ||[M — M'|| < 4. Let
T be the tree resulting from adding j to Ty by applying the procedure Add-Point(j, Ty, M). Let
k be the point in U for which Mk, j] is minimized, so that T'(k,j) = M|k, j]. Note that for every
i € U, T(j,1) > T(k,i). We thus need to consider three cases concerning the relations between
the pairwise distances of 7, j, and k in M’, and for each there are two subcases depending on the
pairwise distances according to T'.

1. M'[4,i) = M'[k,i] > M'[k, j]:
Since |M — M'||» < 6,
MIj,i) < M'[j,i] + 6 = M'[k,4] + 6 < Mk, 4] + 26
In a similar way it is possible to show that M[j,i] > M|k,] — 20.

(a) T'(j,1) = T(k,i) > T(k, j):
Recall that T is é-consistent with M. Thus,

T(j,i) = T(k,i) < M[k,i] + 6 < M][j,i] + 36

In a similar way it is possible to show that 7'(j,7) > M[j,:] — 36.
(b) T(j,2) =T(k,j) = T(k,1):
Since k is the nearest point to j in U, we have Mk, j] < M|[j,4] . Thus,

T(j,1) = T(k,j) = Mk, j] < M[j,1].
On the other hand,

2. M'[j,i] = M'[k,j] > M'[k,1):
In this case it is possible to bound M[j,i] as follows,

Mlk, j] — 26 < M[j,i] < M[k,j] + 26
(a) T'(j,1) = T(k,i) > T(k, j):
T(j,4) = T(k,i) < M[k,i] + 6 < M'[k,i] + 26 < M'[§,1] + 20 < M[j,i] + 30
On the Other hand,
T(j,1) 2 T(k,j) = M[k,j] = M[j,i] — 26

15

(b) T(j,1) =T(k,5) > T(k,1):
We have T'(4,1) = T'(k,j) = M|k, j]. Thus,
M[j,i] — 26 < Mk, 5] = T(j,i) = M[k,j] < M[j,]
3. M'[k,i) = M'[k,j] > M'[j,1):
Here we can bound M[j,1] as follows,
Mk, j) < M[j,i) < M'[j,i] + 6 < M'[k, 5] + 6 < M[k, 5] + 26
We also need the following inequality,
Mlk,i] < M'[k,] + 6 = M'[k, 5] +6 < M[k, 5] + 26
(a) T(j,4) =T(k,i) > T(k,j):
T(j,i) = T(k,i) < M[k,i] + 6 < M[k, 5] + 36 < M[j,i] + 36
T(j,i) > T(h,§) = M[k, j] > Mj,i] - 36
(b) T'(4,3) =T(k,j) > T(k,i): Identical to case 2b.

Lemma 4.2 Let M be a §-ultrametric. Then for every pair of points i,j € [n], and for every point
k € [n], if k is a 20-separator for i and j then |M[i, j]— max{M][i, k], M[j, k]}| < 24, and otherwise,
MIi,] < max{M[i, k], M[j, K]} + 23.

Proof: Since M is a §-ultrametric, there exists an ultrametric M’ such that ||M — M'||, < 4.
Therefore, for every k € [n], |M'[i, k] — M[i, k]| < §, and |M'[j, k] — M[j, k]| <.

In particular, this is true of any 24-separating point &k (of 7 and j). For such a point k, we thus
have that M'[i, k] # M'[j, k], and since M' is an ultrametric, M'[4,j] = max{M'[i, k], M'[j, k]},
implying that

max{M][i, k], M[j,k]} — 26 < M[i, 5] < max{M][i, k), M[j, k]} + 26

In case k is not a 26-separator, then by the Three-Point Condition (Fact 1),
M'[i, 5] < max{M'[i, k], M'[5, k]}
and so
MTi, j] < M'[i, 5] + 6 < max{M[i, k], M[j, k]} + 26
|

It directly follows from Lemma 4.1 and Lemma 4.2, that if M is a J-ultrametric then it always
passes the test.

We now continue with the more involved part of Theorem 4, that is, of proving that any M that
is e-far from being an O(d)-ultrametric is rejected with probability at least 2/3. More precisely, we
prove a sequence of claims from which the contrapositive statement will follow.

The first lemma deals with pairs of points that are consistent with Ty, are not violating, and
are “well separated” by U. Such pairs are analogous to consistent, non-violating pairs of points
that belong to different classes in the exact case. Here the distance Dy is as defined in the exact
case given the tree Ty (Definition 3.6).

16

Lemma 4.3 Let M be an n X n matriz, let Ty be an ultrametric tree that is §-consistent with M
on U C [n], and let i,j € I‘?ji. If there exists a point k € U that is a 65-separator for i and j, and
i and j are not violating with respect to U, then |Dy(i,j) — M[i, j]| < 56.

Proof: Since i and j are both 3d-consistent with Ty (and Dy is an extension of the distance
defined by Ty), we have that |M[i, k] — Dy (3,k)| < 30, and similarly |M[j, k] — Dy (j, k)| < 36.
Since k is a 6d-separator for ¢ and j, |M[i, k] — M[j,k]| > 60, and so |Dy (i,k) — Dy (4,k)| > 0. By
Fact 1 we have that Dy (4,j) = max{Dy/(i, k), Dy (j,k)}. But since ¢ and j are not violating (and
k is a 26-separator for the pair), |M[i, j] — max{M][i, k], M[j, k]}| < 26. Therefore,

Dy (i,7) = max{Dy (i, k), Di (4, k)} < max{M][i, k] + 35, M[j, k] + 36} < M[i, 5] + 56

and similarly max{Dy (i, k), Dy (j,k)} > M[i,5] —55. M

The next lemma is analogous to Lemma 3.2 which dealt with distances between points that
belong to the same class.

Lemma 4.4 Let S C [n]\ U be such that there are at most pn points in S that are (o, \)-effective
separators. Then there exists an ultrametric (star shaped) tree Ts such that for at most (264 6a)n -
|S| of the pairs i,j € S, we have |Ts(i,j) — M[i,5]| > 3.

In order to prove the lemma we shall first prove the following claim.

Claim 4.5 Let ¢ < n be an integer, Q a q X q real valued matriz, 0 < ¢,0 < 1/2, and p > 0.
Suppose that for at least ¢ — ¢n of the rows i in Q, there exists a value r; such that for at least
q — On of the entries Q[i,j] we have |Qli,j] — mi| < p, and that an analogous claim holds for the
columns of Q. Then there exists a single value t, such that for all but at most (2¢ + 30)n - q of the
entries Qli, j], we have |Q[i, j] — t| < 3u.

Proof: The proof of Claim 4.5 follows the same lines as the proof of Claim 3.3. Here we say
that a row 7 is dense if there exists a value r; such that for at least ¢ — On of the entries Q[i, j]
we have |Q[i, j] — 3| < p. We similarly define dense columns. We say that an entry Q[i, j] is row-
representative if its row is dense and |Q[i, j] — ri| < u. We similarly defined column-representative
entries. Then, similarly to the proof of Claim 3.3, we obtain that all but at most 2(¢ + 6)n - ¢ of
the entries in () are both row-representative and column-representative.

We then look at a row i that contains at least ¢ — 2(¢ + 0)n entries that are both row-
representative and column-representative. For each such entry Q[i, j], we have that |Q[i, j]—r;| < p.
We also know that for all but at most On of the entries Q[k, 7] (in the j'th column), |Q[i, j]—Q[k, 7]| <
2u. Hence, for all but at most 2(¢ + 0)n-q+ q-0n = (2¢ + 30)n - g of the entries @[k, j| we have
QU] =il < 3. W

Proof of Lemma 4.4: Let Mg denote the submatrix of M induced by S. Consider any i € S
that is not an (a, A)-effective separator. We claim that there exists a value r; such that in the
row (and similarly the column) that corresponds to ¢ there at most 2an entries Mg[i, j] such that
|Msli, j] — ri| > A/2. To see why this is true, let us order the entries in the 7’th row in increasing
order. Assume for simplicity that all entries are distinct (the argument can be easily modified to
work with non distinct values). Consider the first entry Mgli, j] in this order such that there are

17

exactly an entries that are smaller than Mg[i, j]. Then there must be at most an entries that are
larger by more than \ from Mg[i, j] (otherwise, there would be more than (an)? pairs j, £ such that
|Mi, j] — M3, £]| > A, and thus ¢ would be an (a, A)-effective separator). But this implies that for
ri = Mgli, j] + A/2, there are at most 2an entries Mg|[i, 4] such that |Mg[i, €] — t;| > A\/2.
The corollary follows by applying Claim 4.5 with Q@ = Mg, ¢ = 5,0 =2a,and p=X1/2,. W
At this point we slightly depart from the structure of the analysis in the exact case. We shall
need the following definition.

Definition 4.7 (Incorrect Points) Let U C [n] be such that there exists an ultrametric tree Ty
that is 0-consistent with M on U (and so, in particular, Dy is well defined). Leti & U, and define:

B;\I’)Q def {j € U : there is no A\i-separator for j and i in U, and M[i,j] < Dy(i,j) — A2}. (2)

Then point i is (a, A1, A2)-incorrect with respect to Dy, if ‘Bi}‘l’)‘z > an.

Roughly speaking, a point 7 is incorrect with respect to Dy if there are many points j (from
which i is not separated by U) such that M[i, j] differs significantly from Dy (i, j), and in particular,
is smaller. (We note that when Mf[i, j] is significantly larger, then 7 and j are a violating pair.)

We now show that if the number of inconsistent points, violating pairs and incorrect points is
small, then M is e-close to an approximate ultrametric for the appropriate constants.

Lemma 4.6 Let U be such that there exists an ultrametric tree Ty that is §-consistent with M on
U, and furthermore, there are at most yn points that are not 3-consistent with Ty and at most
inQ pairs of of violating points with respect to Ty. If the number of (§, A1, A2)-incorrect points in
[n] \ U is at most $n, where A\; > 66, then M is e-close to being a max{\i, \s}-ultrametric.

Proof: We show that on all but at most en? pairs of points i, j, we have |M[i, j] — Dy (i, 5)| <
max{A1, A2}. Since Dy is determined by an ultrametric tree, the lemma follows.

Let A denote the set of (§, A1, Az)-incorrect points in [n]\ U, and for each i € A, let B; = Bi)‘l”\Z.
Let us go over all pairs ¢, j:

1. For every pair 4,5 € U: |M[IL>.7] - DU(ILaj)| = |M[7‘a.7] - TU(Z,])| <é.
Similarly, for every i € U, j € I |M[i, 1] — Du (s, §)| = | M[i, 4] — To(i,)| < 36.

2. For every pair of points ,j € P?J‘; that are not violating and j € B;:
(a) If 4 and j are Ai-separated by U: then by Lemma 4.3, |M[i, j] — Dy (i,7)] < 50 (since
A1 > 66).

(b) Otherwise: Dy (i,5) — A2 < M[i,j] < Dy(i,7) +56. The first inequality follows from the
definition of B;. For the second inequality, note that there exists a point £ such that
Dy (i,7) = max{Dy(i,k),Dy(j,k)} (since i,j ¢ U). Therefore, since i and j are not
violating and 4,5 € T'¥, we get M[i, 5] < max{M[i, k], M[j,k]} + 26 < max{D[i,k] +
39, D[j, k] + 36} + 26 = Dy (i,5) + 56

3. For all other pairs, the difference between M and Dy might be larger, but we can bound their
number as follows.

18

(a) The number of pairs 7, j such that i ¢ T'¥? is at most £n?.

(b) The number of violating pairs with respect to U is at most $n®.

(¢) The number of pairs i ¢ A and j € B; is at most £n? (since for each i ¢ A4, |B;| < $n).
)

(d) The number of pairs 7, j such that ¢ € A, is at most inQ.

Our algorithm only checks for inconsistent points and violating pairs of points. Therefore, we
can not apply the above lemma as it is, but have to bound the number of incorrect points. In
order to do so, we introduce the notion of useful points. As we shall see, the two types of points
are related, and we are able to bound the number of incorrect points by bounding the number of
useful points.

Definition 4.8 (Useful Points) We say that a point i ¢ U is (a, \)-useful with respect to U, if
one of the following conditions holds:

1. There are at least (an)? pairs of points that are violating with respect to U U {i}.

2. Let C; def {j: Yk €U, M[j,i] < M[j,k] } be the set of points that are closer to i than to

any point in U. Then there are at least (an)? pairs of points j, £ € C;, such that M[j,£] >
max{M|j,i], M[¢,i)} — X, while for every k € U, M[j,£] < max{M[j, k], M[¢,k]} — .

Intuitively, a useful point is such that its addition to U either causes many violations, or actually
brings Dy closer to M on many pairs of points (and so makes fewer points incorrect).

Lemma 4.7 There exists constants c1,---,cy and dyi,---,ds such that cg,c7 < i and ds > 64, for
which the following holds. Let U be such that there exists an ultrametric tree Ty that is §-consistent
with M and furthermore:

e The number of (ci€,d16)-effective separators with respect to U is at most coen;

e The number of points that are not 30-consistent with respect to U is at most czen.

If the number of (ca€, dod)-useful points with respect to U is less than csen,
then the number of (cge, d3d, dyd)-incorrect points with respect Dy is at most cren.

Proof: Assume, contrary to the claim, that the number of (cge, d3d, dsd)-incorrect points with
respect to Dy is greater than czen. We show that the number of (c4€, d2d)-useful points with respect
to U is at least csen, in contradiction to the premise of the lemma. For ease of the presentation,
we sometimes drop the parameters, and simply refer to incorrect and useful points. Along the way
we introduce constraints on the relations between the different constants ci,---,c7 and dy,---,dy.
At the end of the proof we verify that all these constraints can be satisfied simultaneously.

Let A denote the set of incorrect points that are 3d-consistent with 7y;. The number of such
points is at least (¢; — c3)en > csen. For each point i € A, we show that either 7 is useful, or there
exist at least csen other useful points (that are close to 7).

We start by making several observations concerning each ¢ € A. Consider the set B; = st‘s’d‘“s
as defined in Equation (2). For each j € B;, consider the point k£ € U that is closest to j, so that

19

Dy (j, k) = M[j, k]. Since i is 3d-consistent with Ty, we also have that | Dy (i, k) — M i, k]| < 36. By
definition of Dy, Dy (3, j) = max{Dy (i, k), Dy (j,k)} and so |Dy (4, j) —max{M[j, k], M [i, k] }| < 36.
Now, by definition of B;, we have that | M[i, k]— M [j, k]| < d3d and so |Dy (4,) —M|[j, k]| < (d3+3)4.
Since (again by definition of B;), M[i,j| < Dy(i,j) — d4d, we obtain that for every j € B; and
kelU,

Mli,j] < M[j,k] — (dy — ds — 3)¢ (3)

Furthermore, since for every j € B;, there is no dsd-separator for 7 and 7 in U, then for every
pair 7,£ € B; there is no 2dzd-separator in U. Let us apply Lemma 4.4 using the fact that the
number of (ci€, d16)-effective separators is at most coen. If we set di = 2d3, we obtain that there
exists a star-shaped tree Tp,, such that for all but at most (6cie + 2cge€) - m - | B;| of the pairs of
points j,£ € B;,

|M[j, 0] — 2h(Ts,)| < 3ds,

where h(T's;) is the height of T’s,. We say that such pairs are representative with respect to B;.
Since |B;| > cgen, if (6c1 + 2¢2) < ¢6/32, then the number of non-representative pairs is at most
1.2
33| Bil

Let B; & {j € Bi : MJi,j] < 2h(T,) — 3d36 — 26}. Roughly speaking, B; is the subset of

points in B; that are significantly closer to ¢ than to each other. We consider two cases.

1. |By| > Z|Bi|: Then for every representative pair j, £ € B;,

M[j,f] > 2h(Ts,)— 3dsd
> max{M[j,i], M[¢,i]} + 26

That is, 7 and £ are a violating pair with respect to U U {i}. The number of such pairs is at
least

A 1 1 1 1
|Bi|* — = |Bil* > =|Bi|]> = ==|Bi|> > = |Bi|* > ~(csen)® > (caen)?,
32 32 5

Ut =

where the last inequality is correct if ¢4 < ¢Z/5. Thus, the point 4 is useful (of the first type).

2. |By| < $|Bi|. Let B; B, \ B;, so that |B;| > |B;|. In this case, for every representative

pair j,£ € B;,

M[j,] 2h(T,) + 3d36

<
< min{M[j,], M[£,3]} + (6d3 + 2)¢

By Equation (3), for every such pair, and for every k € U,

Let

Bg def {te B;: j and £ are a representative pair }.
We say that a point j € B; is a good partner with respect to B;, if |Bf| > %|BZ| By a simple
counting argument (using the fact that the number of non-representative pairs is at most
3%|BZ~|2), we get that the number of good partners in B; is at least %|B,| > %|B,~| > csen. We
now show that every good partner j € B; is useful (of the second type).

20

Consider any point £ € BZJ By Equation (4) for every k € U, M[j,£] < M, k]+(7d3+5—dy)d.
Hence, if dy > 7d3 + 5, then for every k € U, M[j,¢] < M[¢,k]. Therefore, all points £ € sz,
are closer to j than to any point in U.

Furthermore, if dy > (7d3 4+ 5 + da), then for every k¥ € U, and every representative pair
0,0 € B], M[£,0') < max{M[£,k], M[¢',k]} — d26. On the other hand, for every such pair
(by definition of representative pairs), M[¢,£'] > max{M|[{,j], M[¢',j]} — 6d3d, and so for
d3 < do/6, we have M[L, '] > max{M][{,j], M[¢',j]} — d2. The number of representative
pairs in B/ is at least

3
4

2
~ 1 9 1 1 1
) 1B = B > 1 4IBE = GIBE > eaen)? 2 (aen)®,

oy 1
B'-72——B'2
|5 32| il” > 16 4 10

if ¢4 < ¢2/10. Therefore, j is a useful point (of the second type).

In order to finish the proof, we go over all constraints introduced above, and check that there exists
a consistent setting of the constants. We have the following constraints:

e c5<cr—c3 (2ca+6c1) <ce/32, c5<cs/d, cz<c2/10.
e dy =2d3, dy> (7d3 +5+ d2), do > 6ds.

We set:

-7 —10

_ 92 _9—4 _ _
o 66707_2) C5,C4,C3—2) 62_2) Cl_2

L d3:6, d1=12, d2=36, d4=84.
|

Proof of Theorem 4: The proof of the theorem will follow similar lines to those of the proof of
Theorem 2. If M is a é-ultrametric, then by Lemma, 4.1 and Lemma 4.2 it always passes the test.
We thus turn to the second part of the theorem.

As in the proof of Theorem 2, we view U as being selected in phases. Here too there are
p = O(1/€%) phases, and in each phase, s’ = O(Inp/¢) points are selected. In what follows, all
constants are as in Lemma 4.7. Similarly to what was argued in the proof of Theorem 2, as long
as the number of (ci¢,d;0)-effective separators is at least coen, or the number of (c4€, d2d)-useful
points is at least csen, either an effective separator or a useful point will be selected in the next
phase with high probability. If a useful point that creates at least (cien)? violations is selected
(that is, of the first type of useful points), then we are done, as the algorithm will reject with high
probability in Step 5 of the algorithm. Otherwise, by the definitions of effective separators and of
useful points, after at most p = 1/(c1€)? + 1/(cqse)? = O(1/€?) phases in which either an effective
separator or a useful point (of the second type) is selected, the number of effective separators must
be less than ceen, and the number of useful points (of the second type) must be less than czen.

If there is no tree Ty that is d-consistent with M on U, then the algorithm will reject in Step 2
of the algorithm. If such a tree is found in Step 2 but the number of points that are not 36-
consistent with Ty is at least czen, then with high probability the algorithm will reject in Step 4 of
the algorithm. Otherwise, we can apply Lemma 4.7 and obtain that the number of (cge, d3d, dsd)-
incorrect points with respect Dy is at most cyen. Hence, if M is e-far from being a d4d-ultrametric,
then there must be at least §n2 violating pairs, or else (since cg,c7 < i and d3 > 66), we could
apply Lemma 4.6 and obtain a contradiction. H

21

5 Testing Tree Metrics

In this section we describe how to modify the testing algorithm for ultrametrics so that it can be
applied to (general) tree metrics. We start with a definition of tree metrics.

Definition 5.1 (Tree Metrics) We say that an n X n matriz M is a tree metric (or an additive
metric), if there exists a tree T with positive weights on the edges, for which the following holds:

1. There ezists a mapping ¢ from [n] into the nodes of T.

2. All internal nodes in the tree to which no i € [n] is mapped to, have degree greater than 2.

3. For every i,j € [n], T(p(7), ¢(5)) = M[i, 7]

In the above definition we allow ¢ to be many-to-one, so that M may actually be a pseudo-
metric. However, with a slight abuse of terminology we refer to M as being a tree metric. In
Section 7 we show that testing the stricter property, in which the embedding ¢ must be one-to-one,
requires (y/n) queries (for a constant).

We show:

Theorem 6 There exists an algorithm for testing whether a matric M is a tree metric. The
algorithm takes a sample of size O(log(1/€)/€3), and has query complezity and running time that
are at most quadratic in the sample size.

CONSTRUCTING A TREE METRIC. Similarly to the case of ultrametrics, there are efficient proce-
dures for constructing a tree 7" that is consistent with a tree metric M. Furthermore, one of the
known procedures [22] is iterative. For our purposes, the important aspect of this procedure is that
when adding a point j to a tree 7', there is a unique choice for the point of departure of j from 7',
and the distance of j to this point is also uniquely determined.

CONSISTENT TREE AND POINT. The definition of a consistent tree (Definition 3.3) and of consistent
points (Definition 3.4), are adapted to this case in a straightforward manner, and 'y denotes the
set of points consistent with 77, .

THE SCAFFOLD PARTITION. Let U C [n] be such that there exists a tree Ty that is consistent
with M on U. Here we partition the points in I';y according to their points of departure from the
scaffold Tyy. Namely, two points in 'y belong to the same class in the partition Py if and only if
they have the same point of departure from Ty. Note that as opposed to the ultrametric case, two
points in the same class may have different distances according to M from the points in U. As in
the ultrametric case, if M is in fact an additive metric, then classes correspond to subtrees with
respect to Ty .

THE SCAFFOLD DISTANCE. We define the scaffold distance Dy similarly to the way it was defined

for ultrametrics (Definition 3.6). In particular, for each point 7 € 'y, let dy (i) be the distance
between ¢ and its point of departure from 7. For all inconsistent points we may select an arbitrary

22

point of departure and an arbitrary distance to this point. For completeness, for each i € U, 1 itself
is defined as its point of departure from Ty, and dy (i) = 0. Then for every 4,5 € [n], define:

Dy (i, j) = du (i) + du () + Tv(pi; ;)

where p; and p; are the points of departure of ¢ and j respectively, and Ty (p;, p;) is their distance
in the tree Ty;. (Note that we slightly abuse notation, since p; and p; may not exist as nodes in the
tree Ty).

Hence, here too if M is a tree metric, then for every pair of points 7,5 € 'y that belong to
different classes in Py, M[i,j] = Dy(i,7), and for every pair 4,j that belong to the same class,
MTi, j] < Dy (4, 7).

VIOLATING PAIRS. Violating pairs are defined the same as in the ultrametric case (Definition 3.7).

THE TESTING ALGORITHM. Testing general tree metrics is essentially the same as testing ultra-
metrics. Here too the algorithm selects a uniform sample U of O(1 /€3) points, and tries to construct
a tree Ty that is consistent with M on U. It then selects an additional sample of O(1/€) pairs of
points, and checks for inconsistent points and violating pairs. The required modifications in the
analysis are provided below, and we start with the definition of separators.

SEPARATORS. Separated and non-separated pairs are defined as in the ultrametric case (Defini-
tion 3.8). The definition of separators is modified as follows.

Definition 5.2 (Separators) Let U be such that there exists a tree Ty that is consistent with M
on U. We say that a point k € T'y is a separator with respect to U for a non-separated pair of points
1,7 € Uy, if either one of the following holds:

1. Both i and j are consistent with 'y and they are separated with respect to U U {k}.

2. Either i or j is inconsistent with I'yyy -

The definition of effective separators (Definition 3.10), remains as is (given the above definition
of separators).

The main difference in the analysis of the algorithm is in the proof of a variant of Lemma 3.2
presented below.

Lemma 5.1 Let C C [n]\ U be a class in Py, and let pc be the common point of departure of
the points in C from Ty. If there are at most fn points in C that are a-effective separators with
respect to U, then there exists a subtree T such that:

1. The root of T¢ is the point pc.

2. For at most (38 + 4a)n - |C| of the pairs i,j € C, we have Tc(3,j) # M]3, j].

3. For each i € C, we have Tc(i,pc) = dy(i).

Proof: For each pair of points 4, j € C, we say that ¢ and j are compatible (with respect to U) if
j is consistent with Ty, (which is equivalent to 4 being consistent with T7,¢;3). Otherwise, they

23

are incompatible. Let @ be a |C| x |C| matrix that is defined as follows. For every compatible pair
i, €C,
. déf DU(Z’J)_M[Z’J] dU(Z)_'_dU(.])_M[Za]]

QliJ 5 - : 5)

For any incompatible pair, Q[i,j] = 0. What does Q[7,j] mean? If 4,5 € C are compatible, then
Q[i, 5] is simply the distance between pc and the point of departure of j from Ty;3-

PROPERTIES OF (). Observe that if ¢ and j are compatible, then 0 < Q[¢, j] < min(dy (i), dy (7))
It follows from the definition of separators that if i € C' is not a separator (with respect to U) for
J,€ € C, then both j and £ are compatible with ¢, and Q[, j] = Q[i, £].

Hence, if ¢ is not an a-effective separator with respect to U, then the number of pairs of entries
Q[i, 7] # Q[i, 4] is at most (n)?. Similarly to what we showed in the proof of Lemma 3.2, it follows
that all but at most an of the entries in the 7’th row (column) in @ have the same value r;.

We can now appeal to Claim 3.3 and obtain that all but at most (28 + 3a) - n - |C| of the
entries in () have the same value ¢t. For each i € C, let d; = dy (i) — t. By Equation (5), for every
compatible pair 7,5 € C:

Mi, 3] = du(6) + du () — 2Qli j]

Thus, if i, j are compatible and Q[4, j] = ¢, then M[i, j] = d; + d;. Therefore, for all but at most
(28 + 3a) - n - |C| of the compatible pairs 7,5 € C, we have M[i, j| = d; + d;.

DEFINING T¢. Intuitively, we would now like to simply set T¢(i,5) = d; + d;. In this case the
subtree T will be a star, such that the center of the star is connected by an edge of length ¢ to the
point po. Each point ¢ € C is a leaf connected by an edge of length d; to the center of the star.

However, the difficulty with this definition is that some of the d;’s may be negative. To address
this issue, we do the following.

1. For each pair i,j € C such that d; > 0 and d; > 0: set T¢:(4,j) = d; + d;.
2. If either d; < 0 or dj < 0: set T¢(4,5) = dy (i) + du(4)-

The subtree T corresponds to a tree that consists of two stars with an edge of length ¢ connecting
the centers of these stars. Every i for which d; > 0 is a leaf of the first star and is connected to
the center of this star with an edge of length d;. (If d; = 0 then i resides at the center of the star.)
Every ¢ for which d; < 0 is a leaf of the second star, and is connected to the center of this star by
an edge of length dy(i). The center of the second star is the point pc. See Figure 3.

BOUNDING THE DIFFERENCES BETWEEN M AND 7. We now count the pairs on which M and
TC differ.

1. Compatible pairs 7,7 for which d; > 0 and d; > 0: In this case, for compatible pairs 4, j for
which Q[i, j] = t, we have T¢(i,j) = d; + dj = MJi,j]. As discussed above, the number of
compatible pairs i, j such that Q[i,j] # ¢ is at most (28 + 3a) - n - |C|. Thus, in this case, for
all but at most (25 + 3a) - n - |C| of the compatible pairs i, j € C, Tc(i,5) = M[i, j].

2. Compatible pairs i, j for which d; < 0: Recall that for each compatible pair i, € C, Q[i, j] <
min(dy(z),dy (7). Thus, if d; = dy (i) —t < 0, then dy (i) < ¢, and so Q[i,j] < t. In particular
Q[s,j] # t, and so we already counted these pairs in Item 1.

24

Figure 3: The tree T¢ and its relation to the scaffold Ty .

3. Incompatible pairs 4, j: We show that the number of incompatible pairs is at most (8 + «) -
n - |C|. By definition of separators, for every i,7,£ € C, if either j or £ is incompatible with
i, then 7 is a separator for j,/. Hence, for each ¢ that is not an a-effective separator, the
number of points j € C that are not compatible with ¢ is at most an. To see why this is
true observe first that if |C| < an then the claim holds trivially. If |C| > an and there are
more than an points j € C that are not compatible with ¢, then ¢ would separate more than
an - |C — 1| > (an)? pairs of points (in contradiction to i not being an a-effective separator).
Assuming that the number of a-effective separators is at most Bn, we get that the total
number of incompatible pairs is at most gn - |C| + an - |C|, as claimed.

The total number of pairs on which M and T¢ differs is hence at most (38 + 4a) -n-|C|. W

CORRECTNESS OF THE ALGORITHM. The remainder of the proof of correctness of the algorithm
proceeds essentially as the proof of Theorem 2 (where here we set a = 5 and 8 = {5). Here too,
with probability at least 5/6 over the choice of U, either there is no tree Ty that is consistent with
M on U, or such a tree exists but the number of a-effective separators with respect to U is at most
Bn. We can show that in the latter case, if M is e-far from being a tree metric, then there are either
more than {7 points that are inconsistent with U, or more than inQ violating pairs (thus causing
the algorithm to reject with high probability). Assuming in contradiction that there are at most
¢n points that are inconsistent with U, and at most inQ violating pairs, we can show that there
exists a tree metric M’ that disagrees with M on at most en? entries. The matrix M’ is defined the
same as in the proof of Theorem 2 with the appropriate modified definition of Dy;. Here though,
for non-separated pairs of points i, 7, we do not need to take the minimum between Dy (7, j) and
Tc(i,7), since To was already defined so that T¢(4,7) < Dy (4, j) for every 4,5 € C.

Note that here too the “natural” algorithm that takes a sample of O(1 /€3) points and checks
whether it is possible to construct a tree that is consistent with these points, is a testing algorithm
for tree metrics.

25

6 Testing Euclidean Metrics

For any two points z,y € R¢, we denote by dist(z,y) the Euclidean distance between z and y.
That is, if z = (z1,...,24) and y = (y1,.-.,yq), then dist(z,y) def gzl(xi — ;)2

An embedding of a set U C [n] in d-dimensional Euclidean space is a mapping ¢ : U — R The
dimension of an embedding ¢, denoted dim(¢), is the dimension of the subspace in which the set
of points {¢(7) };cy resides.

Definition 6.1 (Euclidean Metrics) Let M be an n x n matriz. If there is an embedding ¢ :
[n] — R?¢ such that dist(¢(i), ¢(j)) = M[i,j] for every i,j € [n], then we say that M is a d-
dimensional Euclidean metric.

In the above definition we allow ¢ to be many-to-one, so that M may actually be a pseudo-
metric. However, with a slight abuse of terminology (and in particular so as not to confuse with
pseudo-Euclidean metrics), we refer to M as being a Euclidean metric. In this section we describe
an algorithm for testing whether a matrix M is a d-dimensional Euclidean metric as defined above,
for any given integer d. In Section 7 we show that testing the stricter property, in which the
embedding ¢ must be one-to-one, requires Q(/n) queries (for constant).

The basic underlying idea of the algorithm has appeared in various forms in our other algorithms
as well. The idea is that a small sample from [n] induces certain constraints that must be satisfied
in case the tested matrix has the desired property.

Definition 6.2 (Consistent Embedding) For a given matriz M and a subset U C [n], we say
that an embedding ¢ : U — R? is consistent with M on U, if dist(¢(3), #(5)) = MJi,] for every
i,j € U. When U = [n] we simply say that the embedding is consistent with M.

If U C [n] is such that there exists an embedding ¢ : U — R? that is consistent with M on U, then
we say that U is d-embedable with respect to M.

Our testing algorithm is based on the following fact.

Fact 2 (Unique Embeddings) Let M be an nxn matriz and let U C [n] be a d-embedable subset
with respect to M. For any set S C [n], if there exists an embedding ¢' : U U S — R? such that:

1. ¢' is an extension of ¢ (that is, ¢'(i) = ¢(3) for everyi € U);

2. ¢' is consistent with M on UU S.

3. dim(¢') = dim(¢);

then the embedding ¢’ is unique. Furthermore, for every j € S, ¢'(j) can be computed using only ¢
and the values M{i, j] for every i € U.

The above fact implies that if M is a d-dimensional Euclidean metric, and ¢ : U — R? has
dimension d (that is, the points {¢(%)};c are in general position), then there exists a unique
embedding ¢' : [n] — R¢ that is an extension of ¢ and is consistent with M.

Given a matrix M and a subset U that is d-embedable with respect to M, there is a straightfor-
ward iterative procedure for constructing an embedding ¢ : U — R? that is consistent with M on U.

26

The first point 4; € U is mapped to (0, ...,0), the second point 75 is mapped to (M[i1,i2],0,...,0),
and in general, each new point is mapped to the lowest dimensional subspace possible. This pro-
cedure can be applied to any matrix M and subset U, but will of course fail if for the selected U
is not d-embedable with respect to M.

In the above description we have ignored the issue of precision. As we shall see later (in
Corollary 8), it will suffice to just solve the corresponding decision problem (i.e., does there exist
such an embedding) which can be done in polynomial time. However, it will be instructive to think
of the above (infinite-precision) procedure for sake of the presentation.

We next introduce two useful definitions. In both definitions, M is an n X n matrix.

Definition 6.3 (Consistent and Strongly Consistent Points) Let U C [n] and let ¢ : U —
R be an embedding of U that is consistent with M, and is derived by the iterative procedure
mentioned above. We say that a point j ¢ U is consistent with U if there ezists an extension
¢ UU{j} = R? of ¢ that is consistent with M. We say that j is strongly consistent with U if

dim(¢') = dim(¢).
We denote the set of points in [n]\ U that are consistent with U by 'y, and those that are strongly
consistent by I'y.

If M is a d-dimensional Euclidean metric, then all points are consistent with U, for every subset
U. Thus, if the procedure for extending ¢ to some point j fails, we have evidence that M is not a
d-dimensional Euclidean metric. Note that if j is strongly consistent with U then it is necessarily
consistent with U. The implication in the other direction only holds when the dimension of ¢ is d,
and in this case Ty = I'y.

Definition 6.4 (Violating Pairs) Let U C [n] be d-embedable with respect to M, and let ¢ : U —
R be the embedding obtained by applying the iterative procedure mentioned earlier. For each point
j € Ty, let ¢'(j) be as determined by the unique extension of ¢ to S =UU{j}. We say that a pair
of points i,j € Ty are a violating pair with respect to U if dist(¢' (1), ¢'(4)) # M[i, j].

By Fact 2, if M is a d-dimensional Euclidean metric, then there are no violating pairs with
respect to any subset U. Observe that the definition of violating pairs is applicable only to points
that are strongly consistent with U. If a point j is consistent with U but not strongly consistent,
then the extension ¢’ is not unique. Once again, if dim(¢) = d, then ¢’ is uniquely defined for all
consistent points, and so in this case the above definition is applicable to all pairs of points in I'y.

Lemma 6.1 Let U C [n] be a subset for which there exist an embedding ¢ : U — R that is
consistent with M on U. If M is e-far from being a d-dimensional Euclidean metric, then there
are either more than $n points that are not strongly consistent with respect to U or more than §n2

violating pairs (of strongly consistent points).

Recall that if dim(¢) = d then we may exchange not strongly consistent in the above lemma, with
not consistent.

Proof: Assume contrary to the claim that there are at most $n points that are not strongly
consistent with respect to U, and at most %nQ violating pairs. We next show that there exists a
d-dimensional Euclidean metric M’ that differs from M on at most en? entries. But this contradicts
our assumption on M.

27

For each pair 4,5 € [n], we set M'[i,] = dist(¢'(i),¢'(j)) where ¢ : [n] — R? is defined as
follows. For each i € U, let ¢'(i) = ¢(i), and for each i € Ty, let ¢/(i) be as determined by the
unique extension of ¢ to S = UU{j}. For each point i € [n]\ (UUEL) we set ¢'(7) arbitrary. Thus,

M' and M differ on at most §n2 violating pairs of points (both in I';y), and on at most %nz pairs
of points %, j such that either 7 or j are not strongly consistent with U. W

Suppose that the algorithm was provided with a subset U for which ¢ : U — R? is consistent
with M and has dimension d. By Lemma 6.1 (and the sentence just following the lemma), the
algorithm could test whether M is a d-dimensional Euclidean metric (or e-far from being such a
metric) as follows: The algorithm would uniformly sample 4/e pairs of points and check that all
points selected are consistent with U, and that all pairs of points are non-violating. Clearly, if M
is a d-dimensional Euclidean metric, then the algorithm always accepts. On the other hand, by
Lemma 6.1, if M is e-far from being a d-dimensional Euclidean metric, then the probability that
the sample contains no inconsistent point and no violating pair is at most (1 — %)4/ f<e2<1/3.

Since the algorithm is not provided with such a subset U, it tries to construct it in d+ 1 phases.
The algorithm starts with U = {1} and ¢(1) = (0, ...,0), and in each phase it selects a new sample
of points. If the sample contains a point that is consistent with U but is not strongly consistent, it
adds the point to U and extends ¢ to be defined on it (so that the dimension of ¢ increases). After
d such phases, the algorithm has a subset U and an embedding ¢ : U — R¢ with dimension d as
desired, and it can proceed as described above. (If at any phase an inconsistent point is selected
then the algorithm can clearly reject). But what if at some phase all points selected are strongly
consistent? Then the algorithm simply checks that all pairs are non-violating with respect to U.

Test Euclidean(d)

1. Let U = {1}, and ¢(1) = (0,...,0) € R¢. (Thus, ¢ initially has dimension 0).
2. While dim(¢) < d (and the algorithm has not yet rejected or accepted), do:

(a) Uniformly and independently select s = O(log(d)/e€) pairs of points.
(b) If any of the points selected is not consistent with U, then reject.

(c) Otherwise (all points are consistent), if there exists a point j in the sample that is not
strongly consistent with U: then add j to U and extend ¢ to be defined on U U {j}.
(This step is applicable only as long as dim(¢) < d).

(d) Otherwise (all points are strongly consistent): if any of the pairs of points is violating
with respect to U, then reject. Otherwise, accept.

Theorem 7 The above algorithm is a testing algorithm for Fuclidean metrics.

Note that when the algorithm rejects it provides evidence that M is not a d-dimensional Euclidean
metric (in the form of a subset of points for which there is no d-dimensional embedding that is
consistent with M).

Proof: If M is a d-dimensional Euclidean metric then it is clearly accepted by the algorithm.
Thus, assume M is e-far from being a d-dimensional Euclidean metric. Consider any fized phase
in the algorithm. By Lemma 6.1, there must either be more than $n points in [n] that are not
strongly consistent with U, or there must be more than %ng violating pairs of strongly consistent

61n(d+1)
€

points. In the first case, for s > , the probability that the sample of 2s points does not

28

contain any point that is not strongly consistent with U is at most (1 — £)% < e™% = ﬁ. Since
there are at most d 4+ 1 such phases, the probability that there exists a phase in whic tﬁere are
more than $n points in [n] that are not strongly consistent with U, but the algorithm does not
select such a point, is at most %. (Note that if we reach the last phase, then a point that is not
strongly consistent with U is not consistent with U, and so when selected will cause the algorithm
to reject). In the latter case (there are more than §n2 violating pairs), for s > %, the probability
that no violating pair is selected is at most (1 — £)* < e™5/? = %. Thus, the probability that the

algorithm rejects is at least 1 — (1/6 +1/6) =2/3. N

As a direct corollary to Theorem 7 we get.

Corollary 8 Let the “natural” testing algorithm be the algorithm that simply selects a uniform
sample of O(dlogd/e) points from [n] and accepts if and only if the sample selected is d-embedable
with respect to M. Then the natural algorithm is a testing algorithm for d-dimensional Fuclidean
metrics.

Deciding whether the sample S is d-embedable with respect to M can be done in polynomial
time as follows. For our convenience, we renumber the points in S so that S = {0,...,m—1}. We are
thus asking whether there exist d-dimensional vectors v, ...,9™~1 such that dist(v?,v’) = MTi, j]
for every i,j € S. Since we may assume without loss of generality, that v° is the all-0 vector,
the problem can be rephrased as deciding whether there exist m — 1 vectors, such that the inner
product between v’ and v’ equals Q[i, j], where Q[i, j] def %(MQ[i,O] + M?[j,0] — M?[i,4]). Thus
our problem reduces to deciding whether the matrix) is positive semi-definite and has rank at
most d. The first task can be performed by computing the characteristic polynomial of the matrix,
and approximating its roots to check whether they are all positive. The second task is done by
Gaussian elimination.

Proof: If M is d-dimensional Euclidean metric then clearly the natural algorithm always accepts.
We next show that if M is e-far from being a d-dimensional Fuclidean metric then the natural
algorithm rejects with probability at least 2/3. To see why this is true, observe that every sample
that causes the algorithm Test Euclidean to reject necessarily causes the natural algorithm to reject
(since if in any phase there is either an inconsistent point or a violating pair, then the complete
sample is not d-embedable with respect to M). W

7 Lower Bounds

We say that an n X n matrix M is a proper d-dimensional Euclidean metric, if there exists an
embedding ¢ : [n] — R? that is consistent with M and is one-to-one. We define proper tree metrics
in an analogous manner. In this section we show the following lower bound.

Theorem 9 Any algorithm for testing proper d-dimensional Euclidean metrics requires (/n)
queries. Similarly, any algorithm for testing proper tree metrics requires (y/n) queries. These
bounds hold for testing algorithms that are allowed two-sided error probability.

THE LOWER BOUND IDEA. Before we give the formal argument for our lower bounds, we describe
the basic idea which is common to both bounds. Consider a matrix M that is defined as follows.

29

Fori=1,...,%andj=1,...,%, let: M[2i—1,2j—1] = M[2i—1,2j] = M[2i,2j—1] = M[2i,2j] =
|7 — i]. Thus, in the Euclidean case, the embedding ¢ : [n] — R that maps each pair of points
{27 — 1,2i} to the integer i € R is consistent with M. For an illustration, see Figure 4. Similarly,
in the tree metric case, the set [n] can be mapped consistently with M to the tree 7" which is a
path of § nodes {1,...,5}, where node ¢ is connected to node ¢ + 1 by an edge of weight 1 (and
2i — 1,24 € [n] are both mapped to node 7). In other words, M is a 1-dimensional Euclidean metric

and also a tree metric that corresponds to a path.

Figure 4: An embedding consistent with the matrix M. A pair of points is mapped to each integer on the
line in the range {1,...,%}.

Clearly, M is not a proper Euclidean metric. We next show that M is actually Q(1)-far from
being a proper d-dimensional Euclidean metric, for any d. It can similarly be shown that M is
Q(1)-far from being a proper tree metric. Consider any 3 disjoint pairs of points, {27 — 1,2},
{2j — 1,25}, and {2k — 1,2k}. Assume without loss of generality that i < j < k. Then for any
z € {2i—1,2i}, y € {25 — 1,25} and 2z € {2k — 1,2k},

Mz, z] = M[z,y] + My, z].

Consider any one-to-one embedding ¢ that maps the 6 points {2¢ — 1,2i,25 — 1,24, 2k — 1,2k} to
R (for any d). Then it is easy to verify, that necessarily for some a,b € {i,5,k}, a # b, and for
some = € {2a — 1,2a} and y € {2b — 1, 2b},

dist(¢(z), ¢(y)) # Mz, y]. (6)

Now consider an auxiliary undirected graph G over the vertex set {1,...,%}, such that there
is an edge between vertices a and b if an only if Inequality 6 holds for some = € {2a — 1,2a} and
y € {2b — 1,2b}. Then we know that in Gy, for every three vertices, at least two are connected
by an edge. That is, there is no independent set of size 3. Thus, by Turdn’s Theorem [21], the
number of edges in Gy is Q(n?). By definition of G4 this means that the distance that is induced
by ¢ between pairs of points in [n] disagrees with M on Q(n?) entries. Since this holds for any
one-to-one embedding ¢, we get that M is Q(1)-far from being a proper Euclidean metric.

Finally we give a lower bound on the number of queries required by the “natural” testing
algorithm. While this does not imply a lower bound for every testing algorithm, it provides intuition
to the difficulty of the problem. The natural algorithm takes a uniform sample of points from [n]
and tries to construct a one-to-one embedding of the points in R¢. If it succeeds, then it accepts,
and otherwise it rejects. Note that as long as the algorithm does not select both 2: — 1 and 2:
for some 1 <4 < 4, then it is possible to embed the sample in ®. By the well-known Birthday
Paradoz, if the number of points selected is sufficiently smaller than y/n, then with high probability
no such pair 2¢ — 1 and 2i is selected. A similar argument holds for the natural testing algorithm
for proper tree metrics.

GENERALIZING THE LOWER BOUNDS. In order to generalize the lower bounds to any testing
algorithm, we do the following. Consider first the problem of testing proper Euclidean metrics. We
describe two families of matrices, such that in one family all matrices are proper Euclidean metrics,
while in the other family all matrices are Q(1)-far from being proper Euclidean matrices. However, it

30

is not possible to distinguish with sufficient success probability between a matrix selected uniformly
in the first family, and a matrix selected in the second family, using less than ¢y/n queries, for some
constant ¢ < 1. Since our lower bound argument is very similar to other known lower bound proofs
(cf. [15, 2]), we only provide a sketch.

The two families of matrices are determined by actual embeddings of [n] into R?. The first
family consists of all one-to-one mappings from [n] to two parallel lines, each containing n/2 equally
spaced positions. We may also think of the second family as a mapping to two parallel lines with
equally spaced positions. Here though the range of each mapping in the family consists of only half
the positions: For each position, either two points are mapped to this position, or two points are
mapped to the “parallel position”. For an illustration, see Figure 5.

Figure 5: An illustration of the lower bound construction for Euclidean metrics.

By definition, all matrices in the first family are proper 2-dimensional Euclidean metrics. Note
that in the second family there are at least n/4 pairs of points mapped to one of the lines. Thus,
we can prove, as we did previously, that every matrix in the second family is Q(1)-far from being a
Euclidean metric. (The fact that the positions to which the pairs are mapped to, are not equally
spaced, is immaterial to the proof).

Now consider two “query answering” processes that can interact with a testing algorithm while
constructing a random matrix M. The first process answers the algorithm’s queries while construct-
ing a uniformly selected matrix in the first family, and the second process does so by constructing
a uniformly matrix in the second family. This is done in the following manner. In either case the
process maintains a partial mapping of those points ¢ which appeared in queries performed by the
algorithm (that is, queries concerning entries M[i, j]). Given a new query M[i, j], if i is not yet
positioned (mapped), then both processes select a position, and map % to this position (a similar
selection is done for j if it is not yet positioned). The processes then answer the query consistently
with the mapping they have. The two processes thus differ only in the way they select a position
for a new point %.

1. The first process uniformly selects a vacant position on one of the two parallel lines, and places
the point in that position. It is easy to verify that this is equivalent to selecting a position
in the following manner: The process first selects a pair of parallel positions according to the
distribution induced by selecting a uniform vacant position. Namely, suppose that there are
n1 parallel pairs of positions that are both vacant, and no in which one position is vacant and
one is occupied. Then with probability 2n21’:§n2 a pair of the first type is selected, and with
probability Qnﬁ'ﬁm a pair of the second type is selected. (Among each type the selection is

uniform). If both parallel positions selected are vacant, then the process selects one of the

two with equal probability. If only one is vacant, then it places the point in that position.

31

2. The second process selects a pair of parallel positions according to the same distribution. If
both positions are vacant, it too selects one of the two with equal probability. However, if
one is occupied, then it positions the new point in the same position.

Hence, as long as no pair of parallel positions is selected twice, the distribution on the position
of the new point (or points) is the same for both processes (and hence the distribution on the
answer to the query M[i, j] is the same). It is easy to verify that for a sufficiently small constant
¢ < 1, if less than ¢\/n queries are performed, then the probability that a parallel pair of positions
is selected twice is very small. The lower bound follows (where the details are similar to those
in [15]).

The lower bound for proper tree metrics follows the same lines, and uses a similar choice of
families of matrices. In the first family all matrices are determined by a “comb-tree” (see Figure 6),
where the points in [n] are mapped both to the “root” and to the “tip” of each “comb tooth”. In
the second family, the trees have “missing teeth” and pairs of points are mapped either to the root
of a missing tooth or to the tip of an existing tooth. The only slight technicality that did not
arise in the the Euclidean case, is that here some matrices from the second family are not very
far from being proper tree metrics (since relatively few pairs of points are mapped to the “base of
the comb”). However, the probability that a uniformly selected matrix in the second family will
correspond to such a tree is negligible.

N R A

Figure 6: An illustration of the lower bound construction for general tree metrics.

Further Research.

First, we suspect that our algorithms are not optimal in terms of their dependence on € (and d in
the case of Euclidean metrics), and a more thorough study of this issue is in place.

Second, we conjecture that our algorithms for testing general tree metrics can be extended
to deal with the approximate versions of this property in a similar way to what we show for
ultrametrics. This problem though may be more difficult, as exhibited by the hardness results
described above.

Acknowledgments

We are greatly in debt to Martin Farach-Colton and Michael Bender for their participation at the
initial stages of this work. We would like to thank Madhu Sudan, Bernard Chazelle, and Michelle
Goemans for their help.

32

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

R. Agarwala, V. Bafna, M. Farach, M. Paterson, and M. Thorup. On the approximability
of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing,
28(3):1073-1085, 1999.

N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. In Proceedings of the Forty-First
Annual Symposium on Foundations of Computer Science, pages 240-250, 2000.

N. Alon, E. Fischer, M. Krivelevich, and M Szegedy. Efficient testing of large graphs. In
Proceedings of the Fortieth Annual Symposium on Foundations of Computer Science, pages
645-655, 1999.

N. Alon, M. Krivelevich, I. Newman, and M Szegedy. Regular languages are testable with a
constant number of queries. In Proceedings of the Fortieth Annual Symposium on Foundations
of Computer Science, pages 656666, 1999.

J-P Barthélemy and A. Guénoche. Trees and Proximity Representations. Wiley, New York,
1991.

L. Cavalli-Sforza and A. Edwards. Phylogenetic analysis models and estimation procedures.
American Journal of Human Genetics, 19:233-257, 1967.

J. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance matrices.
Information Processing Letters, pages 215-220, 1989.

A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry. In Pro-
ceedings of the 8th Annual European Symposium on Algorithms (ESA), pages 155-166, 2000.
Lecture Notes in Computer Science edited by M. Paterson, Springer-Verlag, Berlin.

W. H. E. Day. Computational complexity of inferring phylogenies from dissimilarity matrices.
Bulletin of Mathematical Biology, 49(4):461-467, 1987.

A. Dress and V. von Haessler (Eds.). Trees and Hierarchical Structures. Springer Verlag, 1987.
Lecture Notes in Bio-Mathematics.

F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. In
Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing, pages
259-268, 1998.

M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Algorithmica, 13(1/2):155-179, 1995.

J. Felsenstein. Numerical methods for inferring evolutionary trees. Quarterly Review on
Biology, 57(4):379-404, 1982.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653-750, 1998.

O. Goldreich and D. Ron. Property testing in bounded degree graphs. In Proceedings of the
Thirty-First Annual ACM Symposium on the Theory of Computing, pages 406-415, 1997. To
appear in Algorithmica.

33

[16]

[17]

[18]

[19]

[20]
[21]

[22]

S. Kannan, E. Lawler, and T. Warnow. Determining the evolutionary tree. Journal of Algo-
rithms, 21(1):26-50, 1996.

M. Kiivanek. The complexity of ultrametric partitions on graphs. Information Processing
Letters, 27:265-270, 1988.

Dana Ron. Property testing. To appear in the Handbook on Randomization. Currently
available from: http://www.eng.tau.ac.il/"danar, 2000.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. W. H. Freeman, 1973.

P. Turdn. On an extremal problem in graph theory (in Hungarian). Mat. Fiz. Lapok, 48:436—
452, 1941.

M. S. Waterman, T. F. Smith, M Singh, and W. A. Beyer. Additive evolutionary trees. Journal
of Theoretical Biology, 64:199-213, 1977.

34

