Sampling From a Moving Window Over Streaming Data

Brian Babcock *

Abstract

We introduce the problem of sampling from a
moving window of recent items from a data
stream and develop the “chain-sample” and
“priority-sample” algorithms for this problem.

1 Introduction

In many applications, the timeliness of data
is important, and the most recent data is con-
sidered to be most interesting. Outdated data
is “expired” and no longer used when evaluating
queries. We consider the problem of maintain-
ing a uniform random sample of a specified size
k over a “moving window” of the most recent
elements in a data stream. (For an overview of
the streaming data model, see [2].) We present
memory-efficient algorithms for this problem un-
der two definitions of a moving window. A
sequence-based window of size n consists of the
n most recent data elements to arrive, while a
timestamp-based window of duration ¢ consists
of all data elements whose arrival timestamp is
within a time interval ¢ of the current time.

The problem of how to maintain a sample of a
specified size k over data that arrives online has
been studied in the past. The standard solution
is to use Vitter’s reservoir sampling techniques
developed in [6]. Reservoir sampling works well
when the incoming data contains only inserts
and updates but runs into difficulties if the data
contains deletions, as is the case when data ex-
pires. The solution used in [3] is to periodically
regenerate the sample when there have been too
many deletions by an expensive scan of the entire
database. The approach for dealing with dele-
tions in [4] is to keep counts of the most common
data elements using probabilistic counting rather
than attemping to maintain a random sample.

*Dept of Computer Science, Stanford Univ, CA 94305.
E-mail: {babcock,datar,rajeev}@cs.stanford.edu

Mayur Datar *

Rajeev Motwani *

2 Sequence-Based Windows

One algorithm for sampling with a sequence-
based moving window is to maintain a reser-
voir sample for the first n data elements in the
stream, and thereafter to stop maintaining the
sample except that when the arrival of a new
data element causes an element present in the
sample to expire, the expired element is replaced
with the newly-arrived element. This algorithm
maintains a uniform random sample over a win-
dow of the last n elements while requiring only
enough memory to store k data elements, but it
has the disadvantage that it is highly periodic:
if the data element with sequence number % is
included in the sample, then so will be the data
element with sequence number i+ cn for all inte-
gers ¢ > 0. This regularity makes this technique
unacceptable for many applications.

Another simple algorithm is to add each new
data element to a “backing sample” with proba-
bility @g—" and generate the sample of size k
by down-sampling from the backing sample. As
data elements expire they are removed from the
backing sample. An argument using Chernoff
bounds shows that the size of the backing sam-
ple will be between k and 4ck logn, except with
probability ¢'n~¢. With high probability, the al-
gorithm will both keep a large enough backing
sample to supply the desired sample of size k
and also use only O(klogn) memory.

The expected memory usage of the previous
algorithm is O(klogn); a novel technique that
we call “chain-sample” improves this to O(k)
while preserving the same high-probability up-
per bound of O(klogn). (The chain-sample al-
gorithm described below generates a sample of
size 1. To produce a sample of size k, maintain
k independent chain-samples.)

In the “chain-sample” algorithm, when the ith
element arrives it is chosen to become the sam-



ple with probability Min(i,n)/n. If the ith el-
ement is chosen as the sample, the algorithm
also selects the index of the element that will
replace it when it expires (assuming that it is
still present in the sample when it expires). This
index is picked uniformly at random from the
range i+ 1...4%+n, representing the range of in-
dexes of the elements that will be active when
the ith element expires. When the element with
the selected index arrives, the algorithm stores
it in memory and chooses the index of the ele-
ment that will replace it when it expires, etc.,
building a chain of elements to use in case of the
expiration of the current element in the sample.
The expected length of the chain of elements
when the element in the sample is the ith oldest
non-expired element is given by the recurrence:

TN = 1

7
Th+1] = 1+12T[j]
(et

which bounds the expected length by T'[n] < e.

We can also derive an Of(logn) high-
probability upper bound on the memory usage
for a single chain. The number of possible chains
of elements with more than x data elements is
bounded by the number of partitions of n into
& ordered integer parts, which is (7). Since each
such chain has probability n~*, the probability
of any such chain occuring is less than (7)n~%,
which by Stirling’s approximation is less than
(£)*. When z = O(logn) this probability is less
than n™¢ for constant c.

3 Timestamp-Based Windows

The techniques described in the previous sec-
tion will not work for timestamp-based windows
because the number of data elements in the mov-
ing window may vary over time. We have de-
veloped an algorithm we call “priority-sample”
for use with timestamp-based windows. As each
data element arrives, it is assigned a randomly-
chosen priority between 0 and 1. The element se-
lected for inclusion in the sample is the “active”
(non-expired) element with the highest priority.
(To maintain a sample of size k, generate k pri-

orities p; ...py for each element and choose the
element with the highest p; for each i.)

The only data elements that we need to store
in memory are those for which there is no ele-
ment with both a later timestamp and a higher
priority, since only these elements can ever be
used in the sample. We can easily maintain a
linked list of all elements with this property, or-
dering the linked list by decreasing priority and
increasing timestamp.

The linked list maintained by the algorithm is
analogous to the right spine of a “treap” where
the timestamps are fully ordered and the pri-
orities are heap ordered. Therefore, by the ar-
gument in [1], the expected length of this list
when there are n active elements is H(n), the
nth harmonic number. Furthermore, an appli-
cation of the Chernoff bound on the harmonic
numbers (see [5]) demonstrates that the prob-
ability that the length of the list will exceed
2cInn+1 when there are n active elements is less
than 2(n/e)~¢In(c/e). Thus O(klogn) is both
the expected memory usage of “priority-sample”
and also a high-probability upper bound on the
memory usage.

4 Acknowledgements

The authors thank Adam Meyerson and
Sergey Brin for helpful suggestions.

References

[1] C. R. Aragon and R. G. Seidel. Randomized
search trees. In Proc. 30th IEEE FOCS, 1989.

[2] S. Babu and J. Widom. Continuous queries over
data streams. Technical report, Stanford Univer-
sity Database Group, March 2001.

[3] P. B. Gibbons, Y. Matias, and V. Poosala.
Fast incremental maintenance of approximate his-
tograms. In Proc. 28rd VLDB, 1997.

[4] Y. Matias, J. S. Vitter, and M. Wang. Dy-
namic maintenance of wavelet-based histograms.
In Proc. 26th VLDB, 2000.

[5] K. Mulmuley. An Introduction through Random-
ized Algorithms. Prentice Hall, 1993.

[6] J. S. Vitter. Random sampling with a reservoir.
ACM Trans. on Math. Software, 11:31-35, 1985.



