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Implicit curves W
An implicit curve in the plane is expressed as:
f(x,y)=0
Example: a circle with radius r centered at origin:
X2+y2-12=0
J
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Parametric curves

How can we define arbitrary curves?

S

X= X(u)
y =f(u)
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Curves in Computer Graphics

e ABC

¢ Animation paths

* Shape modeling

Animation
(Angel, Plate 1)

Shell
(Douglas Turnbull,
Cs 426, Fall9g)

e etc...

J
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Parametric curves

A parametric curve in the plane is expressed as:

x = f,(u)
y =f,(u)

Example: a circle with radius r centered at origin:

X =TrCos u
y=rsinu

s

Parametric curves

How can we define arbitrary curves?

x = f(u) Vi

y =f(u)
\

Use functions that “blend” control points

x = f(u) =VO*(1 - u) + V1 *u
y =fy(u) =VO*(1 -u) + V1 u
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Parametric curves

More generally:
X(U)= Y B (0" Vi,
i=0

YW =Y BV,

XYW v,
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Parametric curves

What B(u) functions should we use?
X(W)=3 B M)V,
i=0

YORILIORYS Vo

NCy

V1
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Goals

» Some attributes we might like to have:
o Interpolation
o Continuity
o Predictable control
o Local control

« We'll satisfy these goals using:
o Piecewise
o Parametric
o Polynomials
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Parametric curves gﬁ
What B(u) functions should we use?
XU =Y B *V,
i=0
y(u) =3B () *Vi,
i=0
Y,
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Parametric curves

What B(u) functions should we use?
X(W)=3 B M)V, v
i=0

YO=TBON, o Vs
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Continuity Qﬁ

« Parametric continuity (C")
o How many times differentiable is the A
curve at a given point

« Continuity at joints:
o CO continuity means curve is connected at joint
o CI continuity means that segments
share same first derivative at joint
o Cn continuity means that segments
share same nth derivative at joint V,
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Parametric Polynomial Curves ﬁ

¢ Blending functions are polynomials:

X(u):.;B'(u)*VIX B‘(u):iajw

YW =Y BV,

« Advantages of polynomials
o Easy to compute
o Infinitely continuous
o Easy to derive curve properties
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¢ Splines:
o Split curve into segments
o Each segment defined by
blending subset of control vertices

» Motivation:
o Provides control & efficiency
o Same blending function for every segment
o Prove properties from blending functions

« Challenges Ve
o How choose blending functions?
o How guarantee continuity at joints? Vs.\.
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Cubic Piecewise Parametric Polynomial Curves ?

* From now on, consider cubic blending functions
o All ideas generalize to higher degrees

¢ In CAGD, higher-order functions are often used
o Hard to control wiggles

« In graphics, piecewise cubic curves will do

o Smallest degree that allows C? continuity
for arbitrary curves
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Parametric Polynomial Curves

» Derive polynomial Bj(u) to ensure properties
o Example: interpolation of control vertices
o What about easy of control?

B

Vo ViV, Vv v, Vs A

Vs

* Compute polynomial B;(u) to ensure properties

o Example: interpolation of control vertices
and C2 continuity at joints with cubics
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Types of Splines

» Splines covered in this lecture
o Hermite
o Bezier
o Catmull-Rom
o B-Spline

¢ There are many others

Each has different blending functi
resulting in different properties

J
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Cubic Hermite Splines ﬁ

* Definition:

o Each segment defined by
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

* Properties:
o Interpolates control points
o CI continuity at joints

-
Cubic Hermite Splines W

¢ Blending functions:

Vo ViV, v A A Ve

-
Types of Splines

» Splines covered in this lecture
o Hermite
Bezier
o Catmull-Rom
o B-Spline

¢ There are many others

Each has different blending functi
resulting in different properties

J
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Cubic Hermite Splines

 Definition:

o Each segment defined by
position and derivative at
two adjacent control vertices

o Blending functions are
cubic polynomials

« Properties:
o Interpolates control points
o CI continuity at joints

P(U) = BV + By(U)*V, + By(U)*V 5+ By(U)*V

-
Cubic Hermite Splines
Blending functions:
B(u)= Zm:a]u'
j=0
Bi-l Bi
1 1\
0o + 0o +
Bi+ ! Bi+’> '
1 1
0 + 0
0 1 0 1
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Bezier curves

Blending functions:

B(u)=> au’
=0

0 1 0 1
By B
1 1‘
0 0
0 1 0 1
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Bézier curves gnﬁ

» Developed simultaneously in 1960 by
o Bézier (at Renault)
o deCasteljau (at Citroen)

» Curve Q(u) is defined by nested interpolation:

V/'s are control points

-
Explicit formulation W

{Vo, Vy, ..., V, }is control polygon )

¢ Let's indicate level of nesting with superscript j:
« An explicit formulation of Q(U) is given by:

V= Q- uV v

* Case n=2:
Qu) =Vy
= (L-u)Vy + U\t
= (L-uw)[(1- u)VY +uV] +u[(1- UV, +uvy]
= (L-u)VY +2u@- UV + U,
-
Matrix form eW%

Bézier curves may be described in matrix form:

Q= va U -y
= L-u)¥V, +3u-u)?V, + U’ (L- UV, +u¥V,

-1 3 -3 1\(V,
:(u3 Z u 1) 3 -6 3 0|V,
-3 3 0 0|V,
1 0 0 0)\v,
M Bezier

-
Basic properties of Bézier curves gﬁ

~

« Endpoint interpolation:
Q) =V,
QM =V,

« Convex hull:
o Curve is contained within convex hull of control polygon

e Symmetry
Q(u) definedby{V,,...V.,} = Q(L-u)definedby{V,,...V,}

)
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More properties

« General case: Bernstein polynomials

Q= va U -0

» Degree: is a polynomial of degree n

« Tangents: Q'(0) =n(v; -V,)
Q' (M =n(V, ~V,-)
J
4 )
Display gga
Q: How would you draw it using line segments?
A: Recursive subdivision!
J
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Display ﬁ Flatness

Pseudocode for displaying Bézier curves: Q: How do you test for flatness?

A: Compare the length of the control polygon

procedur e Display({V}): .
if {V} flat within & to the length of the segment between endpoints
then

output line segment W,
else
subdivide to produce {kand {R}
Display({L;})
Display({R})
end if
end procedure M=V [+ IV, =V [+ Vs =Vo |y,
|V3 _Vo |
J J
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Splines W Types of Splines

« For more complex curves, piece together Béziers » Splines covered in this lecture
- We want continuity across joints: > Hermite

o Positional (C°) continuity o Bezier

o Derivative (C1) continuity Catmull-Rom

o B-Spline

* Q: How would you satisfy continuity constraints?
¢ There are many others

* Q: Why not just use higher-order Bézier curves?

¢ A: Splines have several of advantages:
Each has different blending functiol»s

* Numerically more stable resulting in different properties
« Easier to compute

* Fewer bumps and wiggles ) )

(" (

Catmull-Rom splines Catmull-Rom Splines

e Catmull & Rom use:
o half the magnitude of the vector between adjacent CP’s

* Properties
o Interpolate control points
o Have C° and C? continuity

* Derivation
o Start with joints to interpolate
o Build cubic Bézier between each joint
o Endpoints of Bézier curves are obvious

« Many other formulations work, for example:

o Use an arbitrary constant T times this vector
o Gives a “tension” control
o Could be adjusted for each joint

* What should we do for the other
Bézier control points?
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Matrix formulation

Convert from Catmull-Rom CP’s to Bezier CP’s:

B, 0 60 0)V,
B| 1/-16 1 0V
B,| 6{0 16 -1V,
B, 0 06 o)y,

Exercise: Derive this matrix.
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Types of Splines

« Splines covered in this lecture
o Hermite
o Bezier
o Catmull-Rom
B-Spline

¢ There are many others

Each has different blending functi
resulting in different properties

i

J
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B-Splines

* Blending functions:

-
Properties

¢ Catmull-Rom splines have these attributes:
o C1 continuity
o Interpolation
o Locality of control
o No convex hull property

(Proof left as an exercise.)
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B-Splines

* Properties: V,

o C2 continuity
o Cubic polynomials

¢ Constraints:

o Three continuity conditions at each joint j
» Position of two curves same
» Derivative of two curves same
» Second derivatives same

o Local control
» Each joint affected by 4

control vertices

Ve

Vg ®

* Give up interpolation :)

o Local control °

oV,

-
B-Splines

Blending functions:
B (u)= ia]u'
i=0

B|-3 BI-
1 1
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Matrix formulation for B-splines ﬁ
¢ Grind through some messy math to get:
-1 3 -3 1)V,
s 13 -6 3 0|V
=l v v 1)6 -3 0 3 0|V,
1 4 1 o)V,
J
( )
What's next? vﬂ

¢ Use curves to create parameterized surfaces
» Surface of revolution y* -1
» Swept surfaces

« Surface patches

Przemyslaw Prusinkiewicz

Demetri Terzopoulos )

s

Summary

¢ Splines: mathematical way to express curves

« Motivated by “loftsman’s spline”
o Long, narrow strip of wood/plastic
o Used to fit curves through specified data points

o Shaped by lead weights called “ducks” e ’
o Gives curves that are “smooth” or “fair” ,/
’

« Have been used to design: )/
o Automobiles )/
o Ship hulls )/
o Aircraft fuselage/wing ===

~ ~. . Pie




