Ve

Ray Casting

[llumination

Thomas Funkhouser
Princeton University
COS 426, Spring 2004

p
Ray Casting v

Image RayCast(Camera camera, Scene scene, int witligight)

Image image = new Image(width, height);
for (inti = 0; i < width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imagel[i][j] = GetColor(scene, ray, hit);

Image RayCast(Camera camera, Scene scene, int witkeight)
{
Image image = new Image(width, height);
for (inti = 0; i < width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imageli][j] = GetColor(scene, ray, hit);

return image;

Without Illumination )
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Illumination W

imageli][j] = GetColor(scene, ray, hit);
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Angel Figure 6.2
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}
}
return image;
}
Wireframe
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Ray Casting
Image RayCast(Camera camera, Scene scene, int witltgight)
Image image = new Image(width, height);
for (inti = 0; i < width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);
return image;
}
With lllumination
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Goal

¢ Must derive computer models for ...
o Emission at light sources
o Scattering at surfaces
o Reception at the camera

« Desirable features ...
o Concise
o Efficient to compute
o “Accurate”
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Overview

¢ Direct lllumination
o Emission at light sources
o Scattering at surfaces

¢ Global illumination
o Shadows
o Refractions
o Inter-object reflections

Direct lllumination

Ve

Empirical Models W

« |deally measure irradiant energy for “all” situations
o Too much storage
o Difficult in practice
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Point Light Source

* Models omni-directional point source
o intensity (ly),

o position (px, py, pz),
o factors (k, k;, k) for attenuation with distance (d)
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Modeling Light Sources gﬁ

e 1. (Xy,2,6,0A) ...
o describes the intensity of energy,
o leaving a light source, ...
o arriving at location(x,y,z), ...
o from direction (6,9), ...
o with wavelength A Y,2)
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OpenGL Light Source Models

« Simple mathematical models:
o Point light
o Directional light
o Spot light
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Directional Light Source

* Models point light source at infinity
o intensity (ly),
o direction (dx,dy,dz)
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No attenuation
with distance
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Spot Light Source K

* Models point light source with direction
o intensity (l,),
o position (px, py, pz),
o direction (dx, dy, dz)
o attenuation
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Light Falling on a Surface

¢ Power per unit area — Irradiance (E)
o Measured in W/m?

* Move surface away from light

o Inverse square law: E ~ 1/r2 v
« Tilt surface away from light
o Cosinelaw: E~n-«| Q
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Modeling Surface Reflectance

* RyBOY.WN) ...
o describes the amount of incident energy,
o arriving from direction (6,9), ...
o leaving in direction (y,y), ...
o with wavelength A A
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Light Emitted from a Surface &
« Power per unit area per unit solid angle —
Radiance (L)
o Measured in W/m?/sr
o Projected area — perpendicular to given direction
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Overview

¢ Direct lllumination

o Scattering at surfaces

¢ Global illumination
o Shadows
o Refractions
o Inter-object reflections

Direct lllumination
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Empirical Models g&
« ldeally measure radiant energy for “all”
combinations of incident angles
o Too much storage
o Difficult in practice
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OpenGL Reflectance Model

« Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

|
Based on model
proposed by Phong \ /'

Diffuse Reflection

¢ Assume surface reflects equally in all directions
o Examples: chalk, clay
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Diffuse Reflection s

« How much light is reflected?
o Depends on angle of incident light

dL =dAcos®
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OpenGL Reflectance Model

¢ Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

Based on model
proposed by Phong

Diffuse Reflection

« How much light is reflected?
o Depends on angle of incident light
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Diffuse Reflection e\

¢ Lambertian model
o cosine law (dot product)
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OpenGL Reflectance Model g%
« Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”
J
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Specular Reflection

How much light is seen?

Depends on:
o angle of incident light
o angle to viewer

Viewer
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OpenGL Reflectance Model gwg

» Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”
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Specular Reflection

« Reflection is strongest near mirror angle
o Examples: mirrors, metals
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Specular Reflection

« Phong Model
o cos(a)"

Viewer

This is a physically-motivated hack!
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Emission
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OpenGL Reflectance Model

« Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +

o “ambient” |
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OpenGL Reflectance Model

* Simple analytic model:
o specular reflection +

o “ambient”
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OpenGL Reflectance Model

* Sum diffuse, specular, emission, and ambient
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Leonard McMillan, MIT

s

Ambient Term

« Represents reflection of all indirect illumination

This is a total hack (avoids complexity of global illumination)!
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OpenGL Reflectance Model

» Simple analytic model:
o specular reflection +

o “ambient”
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Surface lllumination Calculation

 Single light source:

Viewer

=1 +Kl, +Ko(Ne L)l +Ko(V e R)"1




Vs

Surface lllumination Calculation

¢ Multiple light sources:

Viewer
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Overview gﬁ
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Global Illumination W
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Ray Casting (last lecture)

Greg Larson
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» Trace primary rays from camera
o Direct illumination from unblocked lights only

Light 1
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¢ Global illumination
o Shadows
o Transmissions
o Inter-object reflections

Global lllumination

Vs

Shadows

« Shadow term tells if light sources are blocked
o Cast ray towards each light source L;
o S;=0ifray is blocked, S; = 1 otherwise
Light 1
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Fove Shadow
A Term
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Recursive Ray Tracing Qﬁ

« Also trace secondary rays from hit surfaces
o Global illumination from mirror reflection and
transparency

Lignzé
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Mirror reflections

« Trace secondary ray in mirror direction

o Evaluate radiance along secondary ray and
include it into illumination model

Lighﬂé
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Radiance
for mirror
reflection ray
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Transparency

¢ Transparency coefficient is fraction transmitted
o Ky =1 for translucent object, K; = 0 for opaque
o 0 <K;<1for object that is semi-translucent

Transparency
Coefficient
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Refractive Tranparency

For solid objects, apply Snell’s law:

N, sin®, =73, sinG,

T =(ﬂcos@i —-c0sO,)N Iy
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Transparency

» Trace secondary ray in direction of refraction

o Evaluate radiance along secondary ray and
include it into illumination model

Light 1
b

)

e | .

ew
Plane

Radiance for
refraction ray

Ligmzé
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Refractive Transparency

« For thin surfaces, can ignore change in direction
o Assume light travels straight through surface
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Recursive Ray Tracing

» Ray tree represents illumination computation
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Ray traced through scene Ray tree
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Recursive Ray Tracing

« Ray tree represents illumination computation
!
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Ray traced through scene

Back

Ray tree
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Summary W

» Ray casting (direct lllumination)
o Usually use simple analytic approximations for
light source emission and surface reflectance

« Recursive ray tracing (global illumination)

o Incorporate shadows, mirror reflections,
and pure refractions

All of this is an approximation
so that it is practical to compute

More on global illumination later! I
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Recursive Ray Tracing

« GetColorcalls RayTracerecursively

ImageRayTrace(Camera camera, Scene scene, int width, int hebit)
{
Image image = new Image(width, height);
for (inti = 0; i < width; i++) {
for (intj = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
imageli][j] = GetColor(scene, ray, hit);

return image;

-

lllumination Terminology

« Radiant power [flux] (P)
o Rate at which light energy is transmitted (in Watts).

« Radiant Intensity (I)
o Power radiated onto a unit solid angle in direction (in Watts/sr)
» e.g.: energy distribution of a light source (inverse square law)

« Radiance (L)
o Radiant intensity per unit projected surface area (in Watts/m?sr)
» e.g.: light carried by a single ray (no inverse square law)

« Irradiance (E)
o Incident flux density on a locally planar area (in Watts/m?)
» e.g.: light hitting a surface at a poi

« Radiosity (B)
o Exitant flux density from a locally planar area (in Watts/ m?)
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