
1

Evolution of Programming Languages

• 40's machine level
– raw binary

• 50's assembly language
– names for instructions and addresses
– very specific to each machine

• 60's high-level languages
– Fortran, Cobol, Algol

• 70's system programming languages
– C
– Pascal (more for teaching structured programming)

• 80's object-oriented languages
– C++, Ada, Smalltalk, Modula-3, Eiffel, …

strongly typed (to varying degrees)
better control of structure of really large programs
better internal checks, organization, safety

• 90's scripting, Web, component -based, …
– Perl, Java, Visual Basic, …

strongly-hyped languages

• 00's cleanup, or more of the same?
– C#, Python, ...

increasing focus on interfaces, components

Java

• invented mainly by James Gosling (Sun)
• 1990: Oak language for embedded systems

– toasters, microwave ovens
– needs to be reliable, easy to change, retarget
– efficiency is secondary
– implemented as interpreter, with virtual machine

• 1993: run it in a browser instead of a microwave
– renamed "Java"
– HotJava browser supports Java applets, run JVM

• 1994: Netscape supports Java in their browser
– enormous hype: a viable threat to Microsoft

• 1995-present: rapid growth of libraries
– language is relatively stable
– libraries grow and change rapidly
– compiler technology improvements (but still runs slow)
– significant commercial use

but interface/glue, not applets, as originally thought
– AP computer science language as of fall 2003
– Sun sues Microsoft multiple times over Java

• lots of documentation
– http://java.sun.com/docs

2

Java is fully buzzword-compliant

• Sun: "simple, object-oriented, distributed
interpreted, robust, secure, architecture
neutral, portable, high performance, multi-
threaded, dynamic"

• simple: a reaction to complexity of C++ and risks
of C
– no goto, no header files, no preprocessor, no pointers
– garbage collection

• object-oriented: everything is a class
– no independent variables or functions

• distributed: classes for networking, URL's, etc.
• interpreted: compiled into byte codes for a
virtual machine
– JVM interprets byte codes on the target environment
– the same everywhere

• robust: eliminates unsafe constructs
– strongly typed, no pointers, garbage collection,

exception handling
• secure: language is safer; security model

– byte code verifier, run-time checks (e.g., array
bounds, casting)

Buzzwords, continued

• architecture neutral: runs on anything
– byte codes + JVM; large set of libraries

• portable: runs the same on anything
– bytes codes + JVM;
– sizes, behaviors, etc., fully specified
– "write once, run anywhere" (in theory)

• high performance: (not really)
– just-in-time compilation, native mode extensions

• multi-threaded:
– language and library facilities for multiple threads in a

single process
• dynamic:

– classes loaded as needed (like .DLL or shared
libraries)

– run-time type identification, etc.

3

Java vs. C and C++

• no preprocessor
– import instead of #include
– constants use static final declaration

• C-like basic types, operators, expressions
– sizes, order of evaluation are specified

byte, short, int, long: signed integers (no unsigned)
char: unsigned 16-bit Unicode character
boolean: true or false

• really object-oriented
– everything is part of some class
– objects all derived from Objectclass
– static member function applies to whole class

• references instead of pointers for objects
– null references, garbage collection, no destructors
– == is object identity, not content identity

• all arrays are dynamically allocated
– int[] a; a = new int[100];

• strings are more or less built in
• C-like control flow, but

– labeled break and continue instead of goto
– exceptions: try {…} catch(Exception) {…}

• threads for parallelism within a single process
– in language, not a library add-on

Hello world in Java

public class hello {

public static void main(String[] args)
{

System.out.println("hello, world");
}

}

• compile creates hello.class
javac hello.java

• execution starts at main in hello.class
java hello

• filename has to match class name

• libraries in packages loaded with import
– java. lang is core of language

System class contains stdin, stdout, etc.
– java.io is basic I/O package

file system access, input & output streams, ...

4

Fahrenheit / Celsius example

public class fahr {

public static void main(String[] args){
for (int fahr = 0; fahr < 300; fahr += 20)

System.out.println(fahr + " " +
5.0 * (fahr - 32) / 9.0);

}

}

• System.out.println is only for a single string
• formatted output needs the Format class

which is a total botch

2 versions of echo command

public class echo {
public static void main(String[] args)
{
for (int i = 0; i < args.length; i++)

if (i < args.length-1)
System.out.print(args[i] + " ");

else
System.out.println(args[i]);

}
}

public class echo1 {
public static void main(String[] args)
{

String s = ""; // must be initialized

for (int i = 0; i < args.length-1; i++)
s += args[i] + " ";

if (args.length > 0)
s += args[args.length-1];

if (s != "")
System.out.println(s);

}
}

• arrays have a length field
• subscripts always checked

5

Java I/O and file system access

• import java.io.*

• byte I/O
– InputStream and OutputStream

• exceptions
• file access

– FileInputStream, FileOutputStream
• buffering

– BufferedInputStream, BufferedOutputStream
• etc.

• character I/O
– InputReader and OutputWriter
– InputStreamReader, OutputStreamWriter
– BufferedReader, BufferedWriter

• String library
• miscellaneous useful stuff

Byte-at-a-time I/O

// cat <input >output

import java.io.*;

public class cat1 {

public static void main(String args[]) {
int b;

try {
while ((b = System.in.read()) >= 0)

System.out.write(b);
} catch (IOException e) {

System.err.println("IOException " + e);
}

}
}

• System.in, .out, .err like stdin, stdout, stderr
• read() returns next byte of input

– returns -1 for end of file
• any error causes an IO Exception

– caught by the catch() statement

6

Exceptions

• C-style error handling
– ignore errors -- can't happen
– return a special value from functions, e.g.,

-1 from system calls like open()
NULL from library functions like fopen()

• leads to complex logic
– error handling mixed with computation
– repeated code or goto's to share code

• limited set of possible return values
– extra info via errno and strerr: global data
– some functions return all possible values

no possible error return value is available

• Exceptions are the Java solution (also in C++)
• exception indicates unusual condition or error
• occurs when program executes a throw statement
• control unconditionally transferred to catch block
• if no catch in current function, passes to calling
method

• keeps passing up until caught
– ultimately caught by system at top level

try {…} catch {…}

• a method can catch exceptions

public void foo() {
try {

// if anything here throws an IO exception
// or a subclass, like FileNotFoundException

} catch (IOException e) {
// this code will be executed
// to deal with it

}

• or it can throw them, to be handled by caller

• a method must list exceptions it can throw
– exceptions can be thrown implicitly or explicitly

public void foo() throws IOException {
// if anything here throws an exception
// foo will throw an exception
// to be handled by its caller

}

7

Why exceptions?

• reduced complexity
– if a method returns normally, it worked
– each statement in a try block knows that the previous

statements worked, without explicit tests
– if the try exits normally, all the code in it worked
– error code grouped in a single place

• can't unconsciously ignore possibility of errors
– have to at least think about what exceptions can be

thrown

public static void main(String args[])
throws IOException {

int b;

while ((b = System.in.read()) >= 0)
System.out.write(b);

}

• don't use exceptions for normal flow of control
• don't use for "normal" unusual conditions

– e.g., in.read() returns –1 for EOF
– instead of throwing an exception

– should a file open that fails throw an exception?

File I/O of bytes

import java.io.*;

public class cp1 {

public static void main(String[] args) {
int b;

try {
FileInputStream fin =

new FileInputStream(args[0]);
FileOutputStream fout =

new FileOutputStream(args[1]);

while ((b = fin.read()) > -1)
fout.write(b);

fin.close();
fout.close();

} catch (IOException e) {
System.err.println("IOException "+e);

}
}

}

• this is very slow because I/O is unbuffered

8

Buffered byte I/O

import java.io.*;

public class cp2 {

public static void main(String[] args) {
int b;

try {
FileInputStream fin =

new FileInputStream(args[0]);
FileOutputStream fout =

new FileOutputStream(args[1]);
BufferedInputStream bin =

new BufferedInputStream(fin);
BufferedOutputStream bout =

new BufferedOutputStream(fout);

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

} catch (IOException e) {
System.err.println("IOException " +e);

}
}

}

Unicode (www.unicode.org)

• universal character encoding scheme

• UTF-16
– 16 bit internal representation
– encodes all characters used in all languages

numeric value and name for each
semantic info like case, directionality, …

• UTF-8
– byte-oriented external form

variable-length encoding
– compatible with ASCII 7-bit form

ASCII characters occupy 1 byte in UTF-8

• expansion mechanism for > 216 characters
– 94000+ characters today

• Java supports Unicode
– char data type is 16 bits
– String data type is 16-bit Unicode chars
– \uhhhh is Unicode character hhhh

9

Character I/O (char instead of byte)

• use a different set of functions for char I/O
• works properly with Unicode

• InputStreamReader adapts from bytes to chars
• OutputStreamWriter adapts from chars to bytes

• use Buffered(Reader|Writer) as well

public class cp4 {
public static void main(String[] args) {
int b;
try {

BufferedReader bin = new BufferedReader(
new InputStreamReader(

new FileInputStream(args[0])));
BufferedWriter bout = new BufferedWriter(

new OutputStreamWriter(
new FileOutputStream(args[1])));

while ((b = bin.read()) > -1)
bout.write(b);

bin.close();
bout.close();

} catch (IOException e) {
System.err.println("IOException " + e);

}
}

Line at a time character I/O

• handles Unicode

public class cat3 {

public static void main(String[] args) {
BufferedReader in = new BufferedReader(

new InputStreamReader(System.in));
BufferedWriter out = new BufferedWriter(

new OutputStreamWriter(System.out));
try {

String s;
while ((s = in.readLine()) != null) {

out.write(s);
out.newLine();

}
out.flush();

} catch (Exception e) {
System.err.println("IOException " + e);

}
}

10

String library functions

• String is sequence of Unicode chars
– immutable: each update makes a new String
– indexed from 0 to str.length()-1

• search, comparison, etc.:
– substring, toUpperCase, toLowerCase
– compareTo, equals, equalsIgnoreCase
– startsWith, endsWith, indexOf, lastIndexOf
– …

• StringTokenizer
StringTokenizer st = new
StringTokenizer(str);

while (st.hasMoreTokens()) {
String s = st.nextToken();
...

}

• StringBuffer vs String
– String can be inefficient

have to create new ones instead of changing existing
– StringBuffer is mutable

grows & shrinks to match size
– append, insert, setCharAt, …

Runtime, Process, exec

public class runtime1 {
public static void main(String[] args) {

runtime1 r = new runtime1();
}

runtime1() {
try {

Runtime rt = Runtime.getRuntime();
BufferedReader bin = new BufferedReader (

new InputStreamReader(System.in));
String[] cmd = new String[3];
cmd[0] = "/bin/sh"; // Unix-specific
cmd[1] = " -c";
String s;
while ((s = bin.readLine()) != null) {

cmd[2] = s;
Process p = rt.exec(cmd);
BufferedReader pin = new BufferedReader (

new InputStreamReader(p.getInputStream()));
while ((s = pin.readLine()) != null)

System.out.println(s);
pin.close();
p.waitFor();
System.err.println("status = " + p.exitValue());

}
} catch (InterruptedException e) {

e.printStackTrace(); // ignored
} catch (IOException e) {

e.printStackTrace();
}

}

