
Error Recovery

Syntax Errors:

• A Syntax Erroroccurs when stream of tokens is an invalid string.

• In LL(k) or LR(k) parsing tables, blank entries refer to syntax errors.

How should syntax errors be handled?

1. Report error, terminate compilation⇒ not user friendly

2. Report error,recoverfrom error, search for more errors⇒ better

Computer Science 320
Prof. David Walker

- 1 -

Error Recovery

Error Recovery: process of adjusting input stream so that parsing may resume after
syntax error reported.

• Deletion of token types from input stream

• Insertion of token types

• Substitution of token types

Two classes of recovery:

1. Local Recovery: adjust input at point where error was detected.

2. Global Recovery: adjust inputbeforepoint where error was detected.

These may be applied to both LL and LR parsing techniques.

Computer Science 320
Prof. David Walker

- 2 -

LL Local Error Recovery

Local Recovery Technique: in function A(), delete token types from input stream until
token type in follow(A) found⇒ synchronizingtoken types.

Z → XY Z Y → c X → a
Z → d Y → ε X → b Y e

nullable first follow
Z no a,b,d
Y yes c a,b,d,e
X no a,b a,b,c,d

a b c d e
Z Z → XY Z Z → XY Z Z → d
Y Y → ε Y → ε Y → c Y → ε Y → ε
X X → a X → bY e

Computer Science 320
Prof. David Walker

- 3 -

LL Local Error Recovery
Local Recovery Technique: in function A(), delete token types from input stream until
token type in follow(A) found⇒ synchronizingtoken types.

datatype token = a | b | c | d | e;
val tok = ref(getToken());
fun advance() = tok := getToken();
fun eat(t) = if(!tok = t) then advance() else error();
...
and X() = case !tok of

a => (eat(a))
| b => (eat(b); Y(); eat(e))
| c => (print "error!"; skipTo[a,b,c,d])
| d => (print "error!"; skipTo[a,b,c,d])
| e => (print "error!"; skipTo[a,b,c,d])

and skipTo(synchTokens) =
if member(!tok, synchTokens) then ()
else (eat(!tok); skipTo(synchTokens))

Computer Science 320
Prof. David Walker

- 4 -

LR Local Error Recovery

Consider:
1 E → ID 3 E → (E) 5 ES → ES ; E
2 E → E + E 4 ES → E

• Match a sequence of erroneous input tokens using theerror token (a terminal).

6 E → (error) 7 ES → error ;E

• In general, followerror with synchronizing lookahead token.

1. Pop stack (if necessary) until a state is reached in which the action for theerror
token isshift.

2. Shift theerror token.

3. Discard input symbols (if necessary) until a state is reached that has a non-error
action in the current state.

4. Resume normal parsing.

Computer Science 320
Prof. David Walker

- 5 -

Global Error Recovery

Consider LR(1) parsing:

let type a := intArray[10] of 0 in ... end

Local Recovery Techniques would:

1. report syntax error at ‘:=’

2. substitute ‘=’ for ‘:=’

3. report syntax error at ‘[’

4. delete token types from input stream, synchronizing on ‘in’

Global Recovery Techniques would substitute ‘var’ for ‘type’:

• Actual syntax error occursbeforepoint where error was detected.

• ML-Yacc uses global error recovery technique⇒ Burke-Fisher

• Other Yacc versions employ local recovery techniques.

Computer Science 320
Prof. David Walker

- 6 -

Burke-Fisher

Suppose parser gets stuck atnth token in input stream.

• Burke-Fisher repairer tries everysingle-token-typeinsertion, deletion, and substitu-
tion at all points between(n− k)th andnth token.

• Best repair: one that allows parser to parse furthest pastnth token.

• If languages hasN token types, then:
total # of repairs = deletions + insertions + substitutions

total # of repairs =(k) + (k + 1) N + (k) (N − 1)

Computer Science 320
Prof. David Walker

- 7 -

Burke-Fisher

In order to backup K tokens and reparse repaired input, 2 structures needed:

1. k-length buffer/queue- if parser currently processingnth token, queue contains to-
kens(n− k)→ (n− 1). (ML-Yacc k = 15)

2. old parse stack- if parser currently processingnth token, old stack represents stack
state when parser was processing(n− k)th token.

• Whenever token shifted onto current stack, also put onto queue tail.

• Simultaneously, queue head removed, shifted onto old stack.

• Whenever token shifted onto either stack, appropriate reductions performed.

Computer Science 320
Prof. David Walker

- 8 -

Burke-Fisher

• Semantic actions are only applied to old stack.

– Not desirable if semantic actions affect lexical analysis.

– Example:typedef in C.

(Figure from MCI/ML.)

Computer Science 320
Prof. David Walker

- 9 -

Burke-Fisher

For each repair R that can be applied to token(n− k)→ n:

1. copy queue, copynth token

2. copy old parse stack

3. apply R to copy of queue or copy ofnth token

4. reparse queue copy (and copy ofnth token) from old stack copy

5. evaluate R

Choose best repair R, and apply.

Computer Science 320
Prof. David Walker

- 10 -

Burke-Fisher in ML-YACC

Semantic Values

• Insertions need semantic values

%value ID {"bogus"}
%value INT {1}
%value STRING {"STRING")

Programmer-Specified Substitutions

• Some single token insertions and deletions are common.

• Some multiple token insertions and deletions are common.

%change EQ -> ASSIGN | SEMICOLON ELSE -> ELSE
| -> IN INT END

Computer Science 320
Prof. David Walker

- 11 -

