
Princeton University • COS 226 • Algorithms and Data Structures • Spring 2004 • Kevin Wayne • http://www.Princeton.EDU/~cos226

Directed Graphs

Reference: Chapter 19, Algorithms in Java, 3rd Edition, Robert Sedgewick.

Depth first search

Transitive closure

Topological sort

PERT/CPM

2

Directed Graphs

Digraph. Directed graph.
� Edge from v to w.
� One-way street.
� Hyperlink from Yahoo to Princeton.

3

Graph Applications

communication

Graph

telephones, computers

Vertices Edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

4

A Few Directed Graph Problems

Transitive closure. Is there a directed path from v to w?

Topological sort. Can you draw the graph so that all of the edges point
from left to right?

PERT/CPM. Given a set of tasks with precedence constraints, what is the
earliest we can complete each task?

Pagerank. What is the importance of a web page?

Strong connectivity. Are all vertices mutually reachable?

Shortest path. Given a weighted graph, find best route from v to w?

5

Typical client program.
� Create a Digraph.
� Pass the Digraph to a graph processing routine, e.g., DFSearcher.
� Query the graph processing routine for information.

Digraph ADT in Java

public static void main(String args[]) {
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
Digraph G = new Digraph(V, E);
System.out.println(G);
DFSearcher dfs = new DFSearcher(G);
System.out.println("Components = " + dfs.components());

}

calculate number of strongly connected components

6

Directed Graph Representation

Vertex names. A B C D E F G H I J K L M
� This lecture: use integers between 0 and V-1.
� Real world: convert between names and integers with symbol table.

Orientation of edge matters.

Set of edges representation.
� A-B A-G A-C L-M J-M J-L J-K E-D F-D H-I F-E A-F G-E

A

G

E

CB

F

D

H

M

KJ

L

I

7

Adjacency Matrix Representation

Adjacency matrix representation.
� Two-dimensional V � V boolean array.
� Edge v-w in graph: adj[v][w] = true.

A B C D E F G H I J K L M
0 A 0 1 1 0 0 1 1 0 0 0 0 0 0
1 B 0 0 0 0 0 0 0 0 0 0 0 0 0
2 C 0 0 0 0 0 0 0 0 0 0 0 0 0
3 D 0 0 0 0 0 0 0 0 0 0 0 0 0
4 E 0 0 0 1 0 0 0 0 0 0 0 0 0
5 F 0 0 0 1 1 0 0 0 0 0 0 0 0
6 G 1 1 0 0 1 0 0 0 0 0 0 0 0
7 H 0 0 0 0 0 0 0 0 1 0 0 0 0
8 I 0 0 0 0 0 0 0 0 0 0 0 0 0
9 J 0 0 0 0 0 0 0 0 0 0 1 1 1

10 K 0 0 0 0 0 0 0 0 0 0 0 0 0
11 L 0 0 0 0 0 0 0 0 0 0 0 0 1
12 M 0 0 0 0 0 0 0 0 0 1 0 1 0

adjacency matrix

A

G

E

CB

F

D

H M

KJ

LI

8

Adjacency Matrix: Java Implementation

Same as for undirected graphs, but only insert one copy of each edge.

public class Digraph {
private int V; // number of vertices
private int E; // number of edges
private boolean[][] adj; // adjacency matrix
// empty graph with V vertices
public Digraph(int V) {

this.V = V;
this.E = 0;
this.adj = new boolean[V][V];

}
// insert edge v-w if it doesn't already exist
public void insert(int v, int w) {

if (!adj[v][w]) E++;
adj[v][w] = true;

}
...

}

9

Adjacency List Representation

Vertex indexed array of lists.
� Space proportional to number of edges.
� One representations of each directed edge.

A: F C B G

B:

C:

D:

E: D

F: E D

G: E

H: I

I:

J: K L M

K:

L: M

M:

A

G

E

CB

F

D

H M

KJ

LI

adjacency list
10

Adjacency List: Java Implementation

Same as for undirected graphs, but only insert one copy of each edge.

public class Digraph {
private int V; // # vertices
private int E; // # edges
private AdjList[] adj; // adjacency lists

public Digraph(int V) {
this.V = V;
this.E = 0;
adj = new AdjList[V];

}
// insert edge v-w, parallel edges allowed
public void insert(int v, int w) {

adj[v] = new AdjList(w, adj[v]);
E++;

}
...

}

11

Transitive closure. Is there a directed path from v to w?

Use DFS to calculate all nodes reachable from v.

Enables direct solution of simple graph problems.
� Transitive closure.
� Directed cycles.
� Topological sort.

Basis for solving difficult graph problems.
� Strong connected components.
� Directed Euler path.

Depth First Search

To visit a node v:
- mark it as visited
- recursively visit all unmarked nodes w adjacent to v

12

Transitive Closure: Java Implementation

public class TransitiveClosure {
private Digraph G;
private boolean[][] tc;
public TransitiveClosure(Digraph G) {

this.G = G;
this.tc = new boolean[G.V()][G.V()];
for (int v = 0; v < G.V(); v++)

dfs(v, v);
}
private void dfs(int s, int v) {

tc[s][v] = true;
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (!tc[s][w]) dfs(s, w);

}
}
public boolean reachable(int v, int w) { return tc[v][w]; }

is w reachable from v?

run dfs from every vertex

reachability from s,
made it to v

13

Transitive Closure: Cost Summary

Transitive closure. Is there a directed path from v to w?

Open research problem. O(1) query, O(V2) preprocessing time.

Method Preprocess

DFS (online) 1

Query

E + V

Space

E

DFS (preprocess) E V 1 V2

14

Application: Scheduling

Given a set of tasks to be completed with precedence constraints, in
what order should we schedule the tasks?

� Task 0: read programming assignment.
� Task 1: download files.
� Task 2: write code.
� . . .
� Task 12: sleep.

Graph model.
� Create a vertex v for each task.
� Create an edge v-w if task v must precede task w.

15

Directed Acyclic Graph

DAG: directed acyclic graph.

Topological sort: all edges point left to right.

16

Topological Sort with DFS: Java Implementation

Topologically sort a DAG. What if input graph is not a DAG?

public class TopologicalSorter {
...
public TopologicalSorter(Digraph G) {

...
this.cnt = G.V();
for (int v = 0; v < G.V(); v++)

if (!visited[v]) dfs(v);
}
private void dfs(int v) {

visited[v] = true;
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
if (!visited[w]) dfs(w);

}
ts[--cnt] = v;

}
assign numbers in
reverse DFS postorder

17

Application: PERT/CPM

Program Evaluation and Review Technique / Critical Path Method.
� Task v requires time[v] units of processing time.
� Can work on jobs in parallel subject to precedence constraints:

– must finish task v before beginning w
� What's the earliest we can complete each task?

Index Duration Prereq

A 0 -

Task

Begin

B 4 AFraming

C 2 BRoofing

D 6 BSiding

E 5 DWindows

F 3 DPlumbing

G 4 C, EElectricity

H 6 C, EPaint

I 0 F, HFinish

A

B

C

G

H

D

E

F

I

4

6

2

5

3 4

6

0

0
18

Longest Path in DAG

Longest path algorithm in DAG.
� Compute topological order of vertices.
� Initialize fin[v] = 0 for all vertices v.
� Consider vertices v in topological order:

– for each edge v-w, set
fin[w] = max(fin[w], fin[v] + time[w])

In general graphs, longest path problem is NP-hard.

A

B

C

G

H

D

E

F

I

4

6

2

5

3 4

6

0

0

19

Application: Web Crawler

Goal. Crawl Internet and visit every page.
Solution. BFS with implicit graph.

Vertices are websites instead of integers.
� Use string to represent vertex.
� Use symbol table visited to mark website already visited.

Directed edges from website v are URLs that appear in page v.
� Use regular expression to find patterns like http://xxx.yyy.zzz.
� Add newly discovered webpages to Queue of strings.

20

Web Crawler: Java Implementation

.
Queue q = new Queue(); // queue of sites to crawl
HashSet visited = new HashSet(); // ST of visited websites
q.enqueue(s); // start crawl from site s
visited.add(s);
while (!q.isEmpty()) {

String v = (String) q.dequeue();
System.out.println(v);
In in = new In(v);
String input = in.readAll();
String regexp = "http://(\\w+\\.)*(\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find()) {

String w = matcher.group();
if (!visited.contains(w)) {

visited.add(w);
q.enqueue(w);

}
}

}

read in raw html

search using regular expression

if unvisited, mark as visited
and put on queue

http://xxx.yyy.zzz

21

Application: Google's PageRank Algorithm

Goal. Determine which web pages on Internet are important.
Solution. Ignore keywords and content, focus on hyperlink structure.

Random surfer model.
� Start at random page.
� With probability 0.85, randomly select a hyperlink to visit next;

with probability 0.15, randomly select any page.
� Never hit "Back" button.
� PageRank = proportion of time random surfer spends on each page.

Intuition.
� Each page evenly distributes its rank to all pages that it points to.
� Each page receives rank from all pages that point to it.
� "Hard" to cheat.

22

Application: Google's PageRank Algorithm

Solution 1: Simulate random surfer for a long time.

Solution 2: Compute ranks directly until they converge.

Solution 3: Compute eigenvalues of adjacency matrix!

for (i = 0; i < PHASES; i++) {
for (int v = 0; v < G.V(); v++) oldrank[v] = rank[v];
for (int v = 0; v < G.V(); v++) rank[v] = 0;

for (int v = 0; v < G.V(); v++) {
IntIterator i = G.neighbors(v);
while (i.hasNext()) {

int w = i.next();
rank[w] += 1.0 * oldrank[v] / outdegree[v];

}
}

}

23

PageRank Caveats

Dead end: page with no outgoing links.
� All importance will leak out of web.
� Easy to detect and ignore.

Spider trap: group of pages with no links leaving the group.
� Group will accumulate all importance of Web.
� Compute strongly connected components.

– use transitive closure – O(E V) time
– ingenious algorithms using DFS - O(E + V) time

24

Strongly Connected Components

Kosaraju's algorithm.
� Run DFS on reverse digraph and compute postorder.
� Run DFS on original digraph. In search loop that calls dfs, consider

vertices in reverse postorder.

Theorem. Trees in second DFS are strong components. (!)

