

Ray Casting

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color sample based on surface radiance

3D Rendering

- The color of each pixel on the view plane depends on the radiance emanating from visible surfaces

Ray Casting

- For each sample ...
- Construct ray from eye position through view plane
- Find first surface intersected by ray through pixel
- Compute color sample based on surface radiance

Ray Casting

- Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
\{
Image image $=$ new Image $($ width, height $)$;
for (int $\mathrm{i}=0 ; \mathrm{i}<$ width; $i++$) $\{$
for (int $\mathrm{j}=0 ; \mathrm{j}<$ height; $\mathrm{j}++$) $\{$
Ray ray $=$ ConstructRayThroughPixel(camera, i, j); Intersection hit = FindIntersection(ray, scene); image[i][j] = GetColor(hit);
\}
\}
return image;
\}

Constructing Ray Through a Pixel

Ray Casting

- Simple implementation:

```
Image RayCast(Camera camera, Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i=0; i < width; i++) {
        for (int j = 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene)
            image[i][j] = GetColor(hit);
        }
    }
    return image;
}
```


Ray-Sphere Intersection

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$

Constructing Ray Through a Pixel

- 2D Example
$\Theta=$ frustum half-angle
$\mathrm{d}=$ distance to view plane
right $=$ towards x up

Pl $=\mathrm{P}_{0}+\mathrm{d}^{*}$ towards $\left.-\mathrm{d}^{*} \tan (\Theta)\right)^{*}$ right
$\mathrm{P} 2=\mathrm{P}_{0}+\mathrm{d} *$ towards $+\mathrm{d}^{*} \tan (\Theta) *$ right

$\mathrm{P}=\mathrm{P} 1+(\mathrm{i} /$ width +0.5$) *(\mathrm{P} 2-\mathrm{P} 1)$
$=\mathrm{P} 1+(\mathrm{i} /$ width +0.5$) * 2 * \mathrm{~d}^{*} \tan (\Theta) *$ right
$\mathrm{V}=\left(\mathrm{P}-\mathrm{P}_{0}\right) /\left\|\mathrm{P}-\mathrm{P}_{0}\right\|$
Ray: $P=P_{0}+t V$

Ray-Scene Intersection

- Intersections with geometric primitives
- Sphere
- Triangle
- Groups of primitives (scene)
- Acceleration techniques
- Bounding volume hierarchies
- Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Ray-Sphere Intersection I

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$
Algebraic Method
Substituting for P , we get:

$$
\left|P_{0}+t V-O\right|^{2}-r^{2}=0
$$

Solve quadratic equation $a t^{2}+b t+c=0$
where:
$a=1$
$\mathrm{b}=2 \mathrm{~V} \cdot\left(\mathrm{P}_{0}-\mathrm{O}\right)$
$c=\left|P_{0}-C\right|^{2}-r^{2}=0$

$P=P_{0}+t V$

Ray-Sphere Intersection II

Ray: $P=P_{0}+t V$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$
Geometric Method
$\mathrm{L}=\mathrm{O}-\mathrm{P}_{0}$
$\mathrm{t}_{\mathrm{ca}}=\mathrm{L} \cdot \mathrm{V}$
if $\left(\mathrm{t}_{\mathrm{ca}}<0\right)$ return 0
$\mathrm{d}^{2}=\mathrm{L} \cdot \mathrm{L}-\mathrm{t}_{\mathrm{ca}}{ }^{2}$
if $\left(d^{2}>r^{2}\right)$ return 0
$t_{h c}=\operatorname{sqrt}\left(r^{2}-d^{2}\right)$
$\mathrm{t}=\mathrm{t}_{\mathrm{ca}}-\mathrm{t}_{\mathrm{hc}}$ and $\mathrm{t}_{\mathrm{ca}}+\mathrm{t}_{\mathrm{hc}}$
$P=P_{0}+t V$

Ray-Sphere Intersection

- Need normal vector at intersection for lighting calculations

$$
N=(P-O) /\|P-O\|
$$

Ray-Scene Intersection

- Intersections with geometric primitives
» Triangle
- Groups of primitives (scene)
- Acceleration techniques
- Bounding volume hierarchies
- Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Ray-Triangle Intersection

- First, intersect ray with plane
- Then, check if point is inside triangle

Ray-Plane Intersection

Ray: $P=P_{0}+t V$
Plane: $P \cdot N+d=0$
Algebraic Method
Substituting for P , we get:

$$
\left(P_{0}+t V\right) \cdot N+d=0
$$

Solution:
$t=-\left(P_{0} \cdot N+d\right) /(V \cdot N)$
$P=P_{0}+t V$

Ray-Triangle Intersection I

- Check if point is inside triangle algebraically

For each side of triangle
$V_{1}=T_{1}-P$
$V_{2}=T_{2}-P$
$\mathrm{N}_{1}=\mathrm{V}_{2} \times \mathrm{V}_{1}$
Normalize N_{1}
if $\left(\left(P-P_{0}\right) \cdot N_{1}<0\right)$ return FALSE;
end

Ray-Triangle Intersection II

- Check if point is inside triangle parametrically

Compute α, β :
$P=\alpha\left(T_{2}-T_{1}\right)+\beta\left(T_{3}-T_{1}\right)$
Check if point inside triangle.
$0 \leq \alpha \leq 1$ and $0 \leq \beta \leq 1$
$\alpha+\beta \leq 1$

Ray-Scene Intersection

- Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene) \{
min_t $=$ infinity
min_primitive $=$ NULL
For each primitive in scene \{
$\mathrm{t}=$ Intersect(ray, primitive);
if $\left(\mathrm{t}>0\right.$ \& \& $\left.\mathrm{t}<\min _{-} \mathrm{t}\right)$ then min_primitive $=$ primitive min_t $=\mathrm{t}$
return Intersection(min_t, min_primitive) \}
 B

Bounding Volumes

- Check for intersection with simple shape first

Other Ray-Primitive Intersections

- Cone, cylinder, ellipsoid:
- Similar to sphere
- Box
- Intersect 3 front-facing planes, return closest
- Convex polygon
- Same as triangle (check point-in-polygon algebraically)
- Concave polygon
- Same plane intersection
- More complex point-in-polygon test

Ray-Scene Intersection

ntersections with geometric primitives
Sphere
Triangle
Groups of primitives (scene)
» Acceleration techniques

- Bounding volume hierarchies
- Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Bounding Volumes

- Check for intersection with simple shape first

Bounding Volumes

- Check for intersection with simple shape first
- If ray doesn't intersect bounding volume, then it doesn't intersect its contents

Bounding Volume Hierarchies I

- Build hierarchy of bounding volumes
- Bounding volume of interior node contains all children

Bounding Volume Hierarchies III

- Sort hits \& detect early termination

FindIntersection(Ray ray, Node node)
\{
// Find intersections with child node bounding volumes
// Sort intersections front to back
// Process intersections (checking for early termination) min_t = infinity;
for each intersected child i \{
if (min_t $<$ bv_t $[i]$) break;
shape_t $=$ FindIntersection(ray, child);
if (shape $t<\min t$) $\{\min t=$ shape $t ;\}$
\}
return min_t;
,

Ray-Scene Intersection

ntersections with geometric primitives

snhere

Triangle
» Acceleration techniques

- Spatial partitions
» Uniform grids
» Octrees
»BSP trees

Uniform Grid

- Construct uniform grid over scene
- Index primitives according to overlaps with grid cells

Uniform Grid

- Potential problem:
- How choose suitable grid resolution?

Too little benefit if grid is too coarse

Too much cost if grid is too fine

Octree

- Construct adaptive grid over scene
- Recursively subdivide box-shaped cells into 8 octants
- Index primitives by overlaps with cells

Generally fewer cells

Uniform Grid

- Trace rays through grid cells
- Fast
- Incremental

Only check primitives in intersected grid cells

Ray-Scene Intersection

ntersections with geometric primitives
Sphere
Triangle
Groups of primitives (scene)
Acceleration techniques

- Spatial partitions
» Octrees
»BSP trees

Octree

- Trace rays through neighbor cells
- Fewer cells
- More complex neighbor finding

Trade-off fewer cells for more expensive traversal

Ray-Scene Intersection

ntersections with geometric primitives
Sphere
Triangle
Groups of primitives (scene)
» Acceleration techniques

- Spatial partitions
» BSP trees

Binary Space Partition (BSP) Tree

- Simple recursive algorithms
- Example: point finding

Binary Space Partition (BSP) Tree

```
RayTreeIntersect(Ray ray, Node node, double min, double max)
{
    if (Node is a leaf)
        return intersection of closest primitive in cell, or NULL if none
    else
        dist = distance of the ray point to split plane of node
        near_child = child of node that contains the origin of Ray
        far child = other child of node
        if the interval to look is on near side
            return RayTreeIntersect(ray, near_child, min, max)
        else if the interval to look is on far side
            return RayTreeIntersect(ray, far_child, min, max)
        else if the interval to look is on both side
            if (RayTreeIntersect(ray, near child, min, dist)) return ...
            else return RayTreeIntersect(ray, far_child, dist, max)
```

\}

Acceleration

- Intersection acceleration techniques are important
- Bounding volume hierarchies
- Spatial partitions
- General concepts
- Sort objects spatially
- Make trivial rejections quick
- Utilize coherence when possible

Expected time is sub-linear in number of primitives

Heckbert's business card ray tracer

- typedef struct\{double $x, y, z\} v e c ;$ vec $U, b l a c k, a m b=\{.02, .02, .02\}$;struct sphere\{ vec cen,color; double rad,kd,ks,kt,kl,ir\} ${ }^{*} s,{ }^{*}$ best,sph[]=\{0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,5,.2,1., $.7 .3,0 ., .05,1.2,1 ., 8 .,-5, .1,8, .8,1 ., 3, .7,0 ., 0 ., 1.2,3 .,-6 ., 15 ., 1 ., .8,1 ., 7 ., 0 ., 0 ., 0 ., .6,1.5,-3 .,-3 ., 12$. , .8,1., 1.,5.,0.,0.,0.,.5,1.5,;;yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;\{return A.x $\left.{ }^{*} B . x^{\prime}+A . y^{*} B . y+A . z^{*} B . z ;\right\}$ vec vcomb(a,A,B)double a;vec A,B;\{B.x+=a* A. $x ; B . y+=a^{*} A . y ; B . z^{+}=a^{*} A . z ;$ return $B ;\} v e c$ vunit(A)vec $A ;\{r e t u r n ~ v c o m b(1 . / s q r t(v d o t(A, A)), A, b l a c k) ;$ sstruct sphere*intersect (P,D)vec P,D;\{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)), $u=b * b-v d o t(U, U)+s->r a d * s ~->r a d, u=u>0$?sqrt(u):1e31, $u=b-u>1 e-7 ? b-u: b+u, t m i n=u>=1 e-7 \& \&$ u<tmin?best=s,u: tmin;return best;\}vec trace(level,P,D)vec P,D;\{double d,eta,e;vec N, color; struct sphere*s, ${ }^{*} \mid$ if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta= $s->i r ; d=-v d o t(D, N=v u n i t(v c o m b(-1, P=v c o m b(t m i n, D, P), s->c e n ~))$);if($d<0$) $N=v c o m b(-1 ., N$, black $)$, eta=1/eta,d= -d;|=sph+5;while(l-->sph)if((e=| ->k|*vdot(N,U=vunit(vcomb(-1,P,|->cen))))>0\&\& intersect($(P, U)==\mid)$ color=vcomb(e ,l->color,color);U=s->color;color. $x^{*}=U . X ;$ color. $y^{*}=U . y ; c o l o r . z$ *=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0? trace(level, P, vcomb(eta, D,vcomb(eta*dsqrt (e),N,black))): black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb (s->kl,U,black))));\}main()\{print(("\%d \%dln",32,32);while(yx<32*32) U.x=yx\%32-32/2,U.z=32/2$y x++/ 32, U . y=32 / 2 / \tan (25 / 114.5915590261), U=v c o m b(255$. , trace(3,black,vunit(U)),black),printf ("\%.Of \%.Of \%.Ofln",U);\}/*minray! ${ }^{\star /}$

Summary

- Writing a simple ray casting renderer is easy
- Generate rays
- Intersection tests
- Lighting calculations

```
Image RayCast(Camera camera, Scene scene, int width, int height)
{
    Image image = new Image(width, height);
    for (int i=0; i< width; i++) {
        for (int j= 0; j < height; j++) {
            Ray ray = ConstructRayThroughPixel(camera, i, j);
            Intersection hit = FindIntersection(ray, scene);
            mage[i][j] = GetColor(hit);
        }
    }
    return image;
```

Next Time is Illumination!

