Summary of Optimization Material

We've looking at a variety of different analysis techniques and optimization techniqu
over the last couple of weeks:

e Chapter 17.1-17.3: Data-flow analysis and optimizations

— Liveness analysis, reaching definition analysis

— Constant propagation, copy propagation, common sub expression eliminati
constant folding,...

e Chapter 18.1-18.3: Dominators, loops, analysis and optimizations

— Loop invariant analysis and statement hoisting
— Induction variable analysis, strength reduction and elimination.

e Chapter 19.1, 19.3 (not conditional constant propagation): Static Single Assignm
(SSA), a pervasive intermediate representation for advanced optimization

University )

Prof. David Walker



Motivating SSA

e Many optimizations need to find all use-sites for each definition, and all definitiol
sites for each use.

— Constant propagation must refer to the definition-site of the unigue reaching d
inition.
— Copy propagation, common sub-expression elimination...

e Information connecting all use-sites to corresponding definition-sites can be sto
asdef-use chains and/oruse-def chains.

e def-use chains. for each definitiond of r, list of pointers to all uses of thatd
reaches.

e use-def chains. for each use: of r, list of pointers to all definitions of that reach
Uu.

University )

Prof. David Walker



Use-Def Chains, Def-Use Chains Example

1: rt=5
'}
2. r3=1
V.
o: r4 =10 3:| branchr3>rl, 6:
'} '}
7. ril=rl+r4 4. r3=r3+1
'} '}
8: M[r3] =rl 5: goto 3:

Computer Science 320

) - ke = =
Prof. David Walker Princeton University



Static Single Assignment
Static Single Assignment (SSA):
e improvement on def-use chains
e each temporary has only one definition in program

e for each use: of r, only one definition of- reaches;

rt=5
v
ri=rl+1
r2=rl1+1 r3=rl-1

Prof. David Walker University



Static Single Assignment

Static Single Assignment Advantages.
e Dataflow analysis and code optimization is simplified and made more efficient.

e Less space required to represent def-use chains. Def-use chains require space
portional to uses * defs for each variable.

e Eliminates unnecessary relationships:

for 1 =1 to Ndo Ali] =0
for 1 =1to Mdo B[iI] =1

— No reason why both loops should be forced to use same register to hold inc

register.

— SSA renames secondto a new temporary which may lead to better registel
allocation/optimization.

University )

Prof. David Walker



Static Single Assignment

int f(int 1, int j) {

I nt X,VY,;

switch (i) {

case 0: x = 3; break;
case 1: x = 7; break;
case 2: X = 4; Dbreak;
default: x = 17; break;

}

switch (j) {
case 0: y = x+1; break;
case 1. y = x+7; Dbreak;
case 2. y = x+3; break;
default: y = x+33; break;

}

return vy,

}

Building def-use chains costs quadratic space whereas SSA encodes def-use inform
In linear space.

University A

Prof. David Walker



Conversion to SSA Form

Easy to convert basic blocksinto SSA form:
e Each definition modified to define brand-new register, instead of redefining old ot

e Each use of register modified to use most recently defined version.

ril r3 + r4

rz =rl - 1

rli =r4 + r2

r2 =r5 * 4

ril ri + r2

This is easy for straight-line programs but complex control flow introduces problems

University )

Prof. David Walker



Conversion to SSA Form

rl=5
V
r2=rl1+1
r3=r2+1 r3=r2-1

.

4=r3*4

Use ¢ functions.

Prof. David Walker University



Conversion to SSA Form

e ¢-functions enable the use of r3 to be reached by exactly one definition of r3.
o 3" = o(r3,r3d):

—r3” = r3 if control enters from left

—r3"” = r3' if control enters from right

e Can implemenp-functions as set of move operations on each incoming edge.

e In practicep-functions are just used as notation.

Princeton University ~)

Prof. David Walker



Conversion to SSA Form - Simple Approach

Can insertp-functions for each register at each node with more than two predecesso

rl=5
v
r2=rl1+1
r3=r2+1 r3=r2-1

.

r4d =r3 *rl

We can do better...

Prof. David Walker " University Y



Conversion to SSA Form

Path-Convergence Criterion: Insert ag-function for a register at nodez of the flow
graph if ALL of the following are true:

1. There is a bloclk containing a definition of.

There is a blocly # x containing a definition of.

. There is a non-empty paff).. of edges from to z.

There is a non-empty pat), of edges fromy to z.

PathsP,, andF,. do not have any node in common other than

o 0 AW N

. The node: does not appear within botH,, and P, prior to the end, though it may
appear in one or the other.

Assume CFG entry node contains implicit definition of each register:
e r = actual parameter value
e r = undefined

¢-functions are counted as definitions.

Prof. David Walker . University Y



Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes, y, z satisfying conditions 1-6) &&
(z does not contain phi-function forr) DO:
insertr = ¢(r,r,...,r) (One per predecessor) at node

e Costly to compute.

e Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...pgs 433,434

Prof. David Walker University

-12 -



ri=1

{

r2=1

n =

r3=0

branch r3 < 100

Static Single Assignment Example

Insert phi-functions:

v

branch r2 < 20 6: return r2
r2=rl O: r2=r3
v v
r3=r3+1 10: r3=r3+2
\/
11:

Prof. David Walker

Princeton University



Static Single Assignment Example

Rename Variables:
1. traverse dominator tree, renaming different definitionstofr,, ro, r3...
2. rename each regular userdab most recent definition of

3. renamep-function arguments with each incoming edge’s unique definition

Prof. David Walker University

-14 -



Static Single Assignment Example

Rename Variables:

1: ri=1
v

2: r2=1
v

3: r3=0

4.

branch r3 < 100

_

5: branch r2 < 20 6: return r2

7 r2=rl O: r2=r3
v v

8: r3=r3+1 10: r3=r3+2
\\\\\\\\\\\g;4}/”/////////'

11:

Prof. David Walker

-15 -

Princeton University



Dominance Property of SSA
Dominance property of SSA form: definitions dominate uses

o If zis ith argument ofp-function in noden, then definition ofr dominates:
predecessor of.

th

e If z Is used in nonp statement in node, then definition ofr dominates.

Prof. David Walker 3 Princeton University ~



Dead Code Elimination
Givend:t = X op Yy

e t is live at end of nodd if there exists path from end afto use oft that does not
go through definition of .

e if program not in SSA form, need to perform liveness analysis to determinéwé
at end ofd.

e if program is in SSA form:

— cannot be another definition bf

— if there exists use of , then path from end of to use exists, since definitions
dominate uses.

* every use has a unique definition
x 1 IS live at end of nodd if t 1S used at least once

Prof. David Walker . University Y



Dead Code Elimination

Algorithm:

WHILE (for each temporary with no uses &&

statement defining has no other side-effects) DO

delete statement definitidn

1: ri=5

2: r2 =10

3: branch r3 > r2

e

4. r2’=r2+ 15

5! r4=r3+X

6:] r2”=@Q (2, r2)

7 M[rd] = r2”

Computer Science 320
Prof. David Walker

-18 -

Princeton University



Simple Constant Propagation

Givend:t = c,cisconstantGivem: x =t op b
e if program not in SSA form:

— need to perform reaching definition analysis
—use oft in u may be replaced by if d reaches: and no other definition of
reaches;
e if program is in SSA form:
— d reaches, since definitions dominate uses, and no other definition exists
on path fromd to u
— d is only definition oft that reaches, since it is the only definition df .

x any use ot can be replaced by

x any ¢-function of formv = ¢(cy, co, ..., ¢,), Wherec; = ¢, can be replaced by
V = C

Prof. David Walker y University Y



Simple Constant Propagation

2: r2 =10
v
3: branch r3 > r2
4. r2’=r2+ 15
v
5: r4 =r3 + X
\V
6:| r2" =0 (2, r2)
v
7: M[r4] = r2”

Prof. David Walker

-20-

University



