
Summary of Optimization Material

We’ve looking at a variety of different analysis techniques and optimization techniques
over the last couple of weeks:

� Chapter 17.1-17.3: Data-flow analysis and optimizations

– Liveness analysis, reaching definition analysis

– Constant propagation, copy propagation, common sub expression elimination,
constant folding,...

� Chapter 18.1-18.3: Dominators, loops, analysis and optimizations

– Loop invariant analysis and statement hoisting

– Induction variable analysis, strength reduction and elimination.

� Chapter 19.1, 19.3 (not conditional constant propagation): Static Single Assignment
(SSA), a pervasive intermediate representation for advanced optimization

Computer Science 320
Prof. David Walker

- 1 -

Motivating SSA
� Many optimizations need to find all use-sites for each definition, and all definition-

sites for each use.

– Constant propagation must refer to the definition-site of the unique reaching def-
inition.

– Copy propagation, common sub-expression elimination...

� Information connecting all use-sites to corresponding definition-sites can be stored
asdef-use chains and/oruse-def chains.

� def-use chains: for each definition� of �, list of pointers to all uses of� that �

reaches.

� use-def chains: for each use� of �, list of pointers to all definitions of� that reach

�.

Computer Science 320
Prof. David Walker

- 2 -

Use-Def Chains, Def-Use Chains Example

4:

5:

1:

2:

3:

r1 = 5

r3 = 1

r3 = r3 + 1

branch r3 > r1, 6:

goto 3:

6:

7:

8:

r4 = 10

r1 = r1 + r4

M[r3] = r1

Computer Science 320
Prof. David Walker

- 3 -

Static Single Assignment

Static Single Assignment (SSA):

� improvement on def-use chains

� each temporary has only one definition in program

� for each use� of �, only one definition of� reaches�

r2 = r1 + 1 r3 = r1 -1

r1 = 5

r1 = r1 + 1

Computer Science 320
Prof. David Walker

- 4 -

Static Single Assignment

Static Single Assignment Advantages:

� Dataflow analysis and code optimization is simplified and made more efficient.

� Less space required to represent def-use chains. Def-use chains require space pro-
portional to uses * defs for each variable.

� Eliminates unnecessary relationships:

for i = 1 to N do A[i] = 0
for i = 1 to M do B[i] = 1

– No reason why both loops should be forced to use same register to hold index
register.

– SSA renames secondi to a new temporary which may lead to better register
allocation/optimization.

Computer Science 320
Prof. David Walker

- 5 -

Static Single Assignment

int f(int i, int j) {
int x,y;
switch (i) {
case 0: x = 3; break;
case 1: x = 7; break;
case 2: x = 4; break;
default: x = 17; break;
}
switch (j) {
case 0: y = x+1; break;
case 1: y = x+7; break;
case 2: y = x+3; break;
default: y = x+33; break;
}
return y;

}

Building def-use chains costs quadratic space whereas SSA encodes def-use information
in linear space.
Computer Science 320
Prof. David Walker

- 6 -

Conversion to SSA Form

Easy to convert basic blocks into SSA form:

� Each definition modified to define brand-new register, instead of redefining old one.

� Each use of register modified to use most recently defined version.

r1 = r3 + r4

r2 = r1 - 1

r1 = r4 + r2

r2 = r5 * 4

r1 = r1 + r2

This is easy for straight-line programs but complex control flow introduces problems.

Computer Science 320
Prof. David Walker

- 7 -

Conversion to SSA Form

r1 = 5

r2 = r1 + 1

r3 = r2 -1r3 = r2 + 1

r4 = r3 * 4
Use � functions.

Computer Science 320
Prof. David Walker

- 8 -

Conversion to SSA Form
� �-functions enable the use of r3 to be reached by exactly one definition of r3.

� ���� � ����� ����:

– ���� � �� if control enters from left

– ���� � ��� if control enters from right

� Can implement�-functions as set of move operations on each incoming edge.

� In practice,�-functions are just used as notation.

Computer Science 320
Prof. David Walker

- 9 -

Conversion to SSA Form - Simple Approach

Can insert�-functions for each register at each node with more than two predecessors.

r1 = 5

r2 = r1 + 1

r3 = r2 -1r3 = r2 + 1

r4 = r3 * r1
We can do better...

Computer Science 320
Prof. David Walker

- 10 -

Conversion to SSA Form

Path-Convergence Criterion: Insert a�-function for a register� at node� of the flow
graph if ALL of the following are true:

1. There is a block� containing a definition of�.

2. There is a block� �� � containing a definition of�.

3. There is a non-empty path	�� of edges from� to �.

4. There is a non-empty path	�� of edges from� to �.

5. Paths	�� and	�� do not have any node in common other than�.

6. The node� does not appear within both	�� and	�� prior to the end, though it may
appear in one or the other.

Assume CFG entry node contains implicit definition of each register:

� � = actual parameter value

� � = undefined

�-functions are counted as definitions.

Computer Science 320
Prof. David Walker

- 11 -

Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes�, �, � satisfying conditions 1-6) &&
(� does not contain a
��-function for�) DO:

insert� = ���� ��

� �� (one per predecessor) at node�.

� Costly to compute.

� Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...pgs 433,434

Computer Science 320
Prof. David Walker

- 12 -

Static Single Assignment Example
Insert
��-functions:
1:

2:

3:

11:

5:

7:

8:

9:

10:

6: return r2

r3 = 0

r1 = 1

r2 = 1

branch r2 < 20

branch r3 < 100

r3 = r3 + 1 r3 = r3 + 2

r2 = r1 r2 = r3

4:

Computer Science 320
Prof. David Walker

- 13 -

Static Single Assignment Example

Rename Variables:

1. traverse dominator tree, renaming different definitions of� to ��� ��� ��

2. rename each regular use of� to most recent definition of�

3. rename�-function arguments with each incoming edge’s unique definition

Computer Science 320
Prof. David Walker

- 14 -

Static Single Assignment Example

Rename Variables:
1:

2:

3:

11:

5:

7:

8:

9:

10:

6: return r2

r3 = 0

r1 = 1

r2 = 1

branch r2 < 20

branch r3 < 100

r3 = r3 + 1 r3 = r3 + 2

r2 = r1 r2 = r3

4:

Computer Science 320
Prof. David Walker

- 15 -

Dominance Property of SSA

Dominance property of SSA form: definitions dominate uses

� If � is �th argument of�-function in node�, then definition of� dominates�th

predecessor of�.

� If � is used in non-� statement in node�, then definition of� dominates�.

Computer Science 320
Prof. David Walker

- 16 -

Dead Code Elimination

Given�: t = x op y

� t is live at end of node� if there exists path from end of� to use oft that does not
go through definition oft.

� if program not in SSA form, need to perform liveness analysis to determine ift live
at end of�.

� if program is in SSA form:

– cannot be another definition oft

– if there exists use oft, then path from end of� to use exists, since definitions
dominate uses.

� every use has a unique definition

� t is live at end of node� if t is used at least once

Computer Science 320
Prof. David Walker

- 17 -

Dead Code Elimination
Algorithm:

WHILE (for each temporaryt with no uses &&
statement definingt has no other side-effects) DO

delete statement definitiont

branch r3 > r2

1:

2:

r1 = 5

r2 = 10

r2’ = r2 + 15

r4 = r3 + X

M[r4] = r2’’

3:

4:

5:

6:

7:

r2’’ = (r2’, r2)φ

Computer Science 320
Prof. David Walker

- 18 -

Simple Constant Propagation

Given�: t = c, c is constant Given�: x = t op b

� if program not in SSA form:

– need to perform reaching definition analysis

– use oft in � may be replaced byc if � reaches� and no other definition oft
reaches�

� if program is in SSA form:

– � reaches�, since definitions dominate uses, and no other definition oft exists
on path from� to �

– � is only definition oft that reaches�, since it is the only definition oft.

� any use oft can be replaced byc

� any�-function of formv = ����� ���

� ���, where�� � �, can be replaced by
v = c

Computer Science 320
Prof. David Walker

- 19 -

Simple Constant Propagation

branch r3 > r2

2: r2 = 10

r2’ = r2 + 15

r4 = r3 + X

M[r4] = r2’’

3:

4:

5:

6:

7:

r2’’ = (r2’, r2)φ

Computer Science 320
Prof. David Walker

- 20 -

