Undirected Graphs

Some of these lecture slides are adapted from material in:
- Algorithms in C, 3 Edition, Part 5, R. Sedgwick.

Princeton University + COS226 - Algorithms and Data Structures - Spring 2003 - http://www.Princeton.EDU/~cs226

Undirected Graphs

GRAPH. Set of OBJECTS with pairwise CONNECTIONS.
. Interesting and broadly useful abstraction.

Why study graph algorithms?
. Challenging branch of computer science and discrete math.
. Hundreds of graph algorithms known.
. Thousands of practical applications.

Graph

communication

Graphs

Vertices Edges

telephones, computers fiber optic cables

circuits gates, registers, processors | wires
mechanical joints rods, beams, springs
hydraulic reservoirs, pumping stations | pipelines

financial stocks, currency transactions

transportation

street intersections, airports | highways, airway routes

scheduling tasks precedence constraints
software systems | functions function calls
internet web pages hyperlinks
games board positions legal moves

social relationship

people, actors friendships, movie casts

Graph Jargon

Terminology.

. Vertex: v.

. Edge: e = v-w
. Graph: G (® (©
. Vvertices, Eedges.

. Parallel edge, self loop.
. Directed, undirected. ® ®
. Sparse, dense. F

. Path, cycle. ©
. Cyclic path, tour.

. Tree, forest. ®_® G‘

. Connected, connected component.

A Few Graph Problems

PATH. Is there a path between s fo 1?
SHORTEST PATH. What is the shortest path between two vertices?
LONGEST PATH. What is the longest path between two vertices?

CYCLE. TIs there a cycle in the graph?
EULER TOUR. Is there a cyclic path that uses each edge exactly once?
HAMILTON TOUR. TIs there a cycle that uses each vertex exactly once?

CONNECTIVITY. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
BI-CONNECTIVITY. Is there a vertex whose removal disconnects graph?

PLANARITY. Canyou draw the graph in the plane with no crossing edges?
ISOMORPHISM. Do two adjacency matrices represent the same graph?

Graph ADT inC

Typical client program.
. Call GRAPHi ni t () or GRAPHr and() to create instance.
. Uses Gr aph handle as argument to ADT functions.
. Calls G aph ADT function to do graph processing.

client.c

#i ncl ude <stdi o. h>
#i ncl ude "graph. h"

int main(int argc, char *argv[]) {
int V= atoi(argv[1]);
int E= atoi(argv[2]);
G aph G = GRAPHrand(V, E);
GRAPHshow(G ;
printf ("%l conponent(s)\n", GRAPHcc(Q);
return O;

Graph ADT inC

Standard method to separate clients from implementation.
. Opagque pointer to Graph ADT.
. Plus simple t ypedef for Edge.

graph.h

typedef struct graph *G aph;
typedef struct { int v, w } Edge;
Edge EDGEi nit(int v, int w;

Graph GRAPHI nit(int V);

Graph GRAPHrand(int V, int E);

void GCRAPHdestroy(Gaph G ;

void GRAPHshow(Graph G ;

voi d GRAPHI nsert E(Graph G Edge e);
voi d GRAPHrenoveE(Graph G Edge e);
i nt CRAPHcc(G aph O ;

i nt GRAPHi spl anar (G aph G ;

Graph Representation

Vertex hames. (ABCDEFGHIJKLM)
. C program uses integers between 0 and V- 1.
. Convert via associative indexing symbol table.

Two drawing represent same graph.

Set of edges representation.
. {A-B,A-G,A-C,L-M,T-M, J-L, J-K,E-D, F-D, H-I, F-E, A-F, G-E }.

Adjacency Matrix Representation

Adjacency matrix representation.
. Two-dimensional V x V array.
. Edgev-wingraph: adj[v][W = adj[wW[v] = 1.

ABCDEFGHI JKLM

2 0Al0110011000000

1B[1000011000000

2Cl{1000000000000

(&) (© (o) 3D0000110000000

4E0001011000000

5F1100100000000

(b) (E) 6G1100100000000

7HO000000010000

- 81/0000000100000

@) ® 9J/0000000000111

10K|0 000000001000

; 11 L[000000000100 1

H—C> O—) 12M0000000001010
Adjacency Matrix

Graph ADT Implementation: Adjacency Matrix

#i ncl ude "graph. h"

struct graph {

int V; /] # vertices
int E /1 # edges
int **adj; /1 V x V adjacency matrix

s

G aph GRAPHi nit(int V) {
Gaph G = mal | oc(sizeof *Q;
G>Y =V, G>E = 0;
G >adj = MATRIXinit(V, V, 0);
return G

}

voi d GRAPHI nsert E(Graph G Edge e) {

int v=.ev, w=ew

if (G>adj[v][w == 0) G >E++; no parallel edges

G>adj[v][W = G>adj[w[v] = 1;

Adjacency List Representation

Vertex indexed array of lists.
. Space proportional to number of edges.
. Two representations of each undirected edge.

N

Adjacency List

o >

®&—0

.
&

T oY T O TmMO 0

Graph ADT Implementation: Adjacency List

#i ncl ude "graph. h"

typedef struct node *li nk;

struct node {
int w /1 current vertex in adjacency |ist
link next; // next node in adjacency list

b
struct graph {
int V; /] # vertices
int E /'l # edges
link *adj; // array of V adjacency lists

}

I'i nk NEWhode(int w, link next) ({
link x = mal | oc(sizeof *x);
X->W = W,

X->next = next;
return x;

Adjacency List Graph ADT Implementation

/1 initialize a new graph with V vertices
G aph GRAPHi nit(int V) {

int v;

G aph G = mal |l oc(sizeof *Q;

G>V =V,

G>E = 0;

G>adj = malloc(V * sizeof (link));

for (v =0; v <V, v+t+) G>adj[v] = NULL;
return G

/1 insert an edge e = v-winto Gaph G
voi d GRAPH nsert E(Graph G Edge e) {
int v=ev, w=ew

G >adj[v] = NEWode(w, G >adj[v]);
G >adj [W = NEWhode(v, G >adj[wW]);
G >E++;

Graph Representations

Graphs are abstract mathematical objects.
. ADT implementation requires specific representation.
. Efficiency depends on matching algorithms to representations.

: Edge between Edge fromv Enumerate
AT Space v and w? to anywhere? all edges
Adjacency matrix o(v2) o) o(v) o(V?2)
Adjacency list O(E +V) O(E) o) O(E + V)

Most real-world graphs are sparse [adjacency list.

- .

Graph Search

Goal. Visit every node and edge in Graph.
A solution. Depth-first search.
. To visit a node v:
- mark it as visited
- recursively visit all unmarked nodes w adjacent o v

. To traverse a Graph G
- initialize all nodes as unmarked
- visit each unmarked node

Enables direct solution of simple graph problems.
Connected components.
. Cycles.

Basis for solving more difficult graph problems.
. Biconnectivity.
. Planarity.

Depth First Search: Connected Components

graph.c (connected components)

#defi ne UNVARKED -1

/'l traverse conponent of graph
int GRAPHcc(Graph G {
int v, id = 0;

/[l initialize all nodes as unmarked
for (v =0; v < G>V; v++) G>cc[v] = UNVARKED,
/1 visit each unmarked node connected component of v
for (v =0; v < G>V;, v++)

if (G>cc[v] == UNMARKED) dfs(G v, id++);
return id;

}

// are v and win the same connected conponent?
i nt GRAPHconnect (int v, int w {
return G>cc[v] == G>cc[W;

}

Depth First Search: Connected Components

Depth First Search: Adjacency Matrix

void dfs(Graph G int v, int id) {
int w
G >cc[v] =id;
for (w=0; w< G>V, wt)
if (G>adj[v][W == 1 && G >cc[w == UNVARKED)
dfs(G w, id);

}
Depth First Search: Adjacency List

void dfs(Graph G int v, int id) {
link t;
int w
G >cc[v] = id;

/] iterate over all nodes w adjacent to v

for (t = G>adj[v]; t !'= NULL; t = t->next) { -
W = t->w idiom
if (G>cc[w == UNMARKED) dfs(G w, id);

}

}

Connected Components

PATHS. Ts there a path from s to t?

Method Preprocess Query Space
Union Find O(E log* V) O(log* V) o)
DFsS O(E +V) o(1) o)
UF advantage.

. Dynamic: can intermix query and edge insertion.

DFS advantage.
. Can get path itself in same running time.
- maintain parent-link representation of tree
- change DFS argument to pass EDGE taken to visit vertex
. Extends to more general problems.

Graphs and Mazes

Maze graphs.
. Vertices = intersections
. Edges = hallways.

DFSs.
. Mark ENTRY and EXIT halls at each vertex.
. Leave by ENTRY when no unmarked halls.

Breadth First Search

Depth-first search.
. Visit all nodes and edges recursively.
. Put unvisited nodes on a STACK.

Breadth-first search. E
. Put unvisited nodes on a QUEUE.

SHORTEST PATH. What is fewest number of edges to get from s to t?

Solution. BFS.
. Tnitialize dist[v] = », dist[s] = 0.
. When considering edge v- w.
- if di st[w] is marked, then ignore
- if wnot marked, set di st[w] = dist[v] + 1

20

Breadth First Search

Breadth First Search: Adjacency List

bf s(Graph G int s) {
link t;
int v, w
for (v =0; v <G>V, v+t+) G>dist[v] = INFINTY;

G >dist[s] = 0;
QUEUEpuUt (S) ;
while (! QEUEenmpty()) {
v = QUEUEget ();
for (t = G=>adj[v]; t !'= NULL; t = t->next) {

w = t->w,

if (G>dist[w] == INFINITY) {
G>dist[w] = G>dist[v] + 1;
QUEUEpuUL (W) ;

}

21

Related Graph Search Problems

PATHS. Ts there a path from s to t?
. Solution: DFS, BFS, any graph search.

SHORTEST PATH. Find shortest path (fewest edges) from s to t.
. Solution: BFS.

CYCLE. TIs there a cycle in the graph?
. Solution: DFS. See textbook.

EULER TOUR. TIs there a cyclic path that uses each edge exactly once?
. Yes if connected and degrees of all vertices are even.

HAMILTON TOUR. TIs there a cycle that uses each vertex exactly once?
. Solution: 22?2 (NP-complete)

22

Bridges of Kohigsberg

..... in Kénigsberg in Prussia, there is an island A, called the Kneiphof;
the river which surrounds it is divided into fwo branches ... and these
branches are crossed by seven bridges. Concerning these bridges, it
was asked whether anyone could arrange a route in such a way that he
could cross each bridge once and only once....."

. Leonhard Euler, The Seven Bridges of Konigsberg, 1736.

EULER TOUR. TIs there a cyclic path that uses each edge exactly once?
. Yes if connected and degrees of all vertices are even.

23

Euler Tour

How to find an Euler tour (assuming graph is Eulerian).
. Start at some vertex v and repeatedly follow unused edge until you
return to v.
- always possible since all vertices have even degree
. Find additional cyclic paths using remaining edges and splice back
into original cyclic path.

24

Euler Tour

How to find an Euler tour (assuming graph is Eulerian).

. Start at some vertex v and repeatedly follow unused edge until you
return to v.

- always possible since all vertices have even degree

. Find additional cyclic paths using remaining edges and splice back
into original cyclic path.

How to efficiently keep track of unused edges? E
. Delete edges after you use them.

How to efficiently find and splice additional cyclic paths?
. Push each visited vertex onto a stack.

25

Euler Tour: Implementation

Euler Tour

int euler(Gaph G int v) {

link t;

int w

for(t = G>adj[v]; t !'= NULL, v = w {
STACKpush(V) ;
w = t->w
GRAPHr enove(G, EDGE(v, W));

} 2 !

return v; delete both copies of edge

}

voi d GRAPHshowEul er (Graph G int v) {
STACKi ni t (G >E) ;
STACKpush(v);
while ((euler(G v) == v) & ! STACK senpty())
v = STACKpop();
printf("% ", v);

cyclic path back to initial vertex

}
if (!STACKi senpty()) printf("Not Eulerian.\n");

26

