
Brute force
Rabin-Karp

Knuth-Morris-Pratt
Right-Left scan

String Search

2

Text with N characters
Pattern with M characters
• match existence: any occurence of pattern in text?
• enumerate: how many occurences?
• match: return index of any occurence
• all matches: return indices of all occurences
•
•
•
•
•
•
•
•

Assume that N >> M >> number of occurences

Ex: N = 100,000; M = 100; five occurences

String Searching

focus of this lecture

Sample problem: find avoctdfytvv in
 kvjlixapejrbxeenpphkhthbkwyrwamnugzhppfxiyjyanhapfwbghx
 mshrlyujfjhrsovkvveylnbxnawavgizyvmfohigeabgksfnbkmffxj
 ffqbualeytqrphyrbjqdjqavctgxjifqgfgydhoiwhrvwqbxgrixydz
 bpajnhopvlamhhfavoctdfytvvggikngkwzixgjtlxkozjlefilbrboi
 gnbzsudssvqymnapbpqvlubdoyxkkwhcoudvtkmikansgsutdjythzl
 apawlvliygjkmxorzeoafeoffbfxuhkzukeftnrfmocylculksedgrd
 ivayjpgkrtedehwhrvvbbltdkctq

3

Find M-char pattern in N-char text

Applications

• word processors

• virus scanning

• text information retrieval (ex: Lexis/Nexis)

• digital libraries

• computational biology

• web search engines

Theoretical challenge: linear-time guarantee

• suffix-trie index costs ~NlgN

Practical challenge: avoid BACKUP

• often no room or time to save input chars

Fundamental algorithmic problem

String searching context

Now is the time for all people to come to
the aid of their party.Now is the time for
all good people to come to the aid of
theirparty.Now is the time for manygood
people to come to the aid of their
party.Now is the time for all
good people to come to the aid of their
party.Now is the time for a lot of
good people to come to the aid of their
party.Now is the time for all of the
good people to come to the aid of their
party.Now is the time for all good people
to come to the aid of their
party. Now is the time for each good
person to come to the aid of their
party.Now is the time for all good people
to come to the aid of their
party. Now is the time for all
good Republicans to come to the aid of
their party.Now is the time for all
good people to come to the aid of their
party. Now is the time for many or all
good people to come to the aid of their
party. Now is the time for all good people
to come to the aid of their
party.Now is the time for all good
Democrats to come to the aid of their
party. Now is the time for all people to
come to the aid of their party.Now is the
time for all good people to come to the aid
of theirparty.Now is the time for manygood
people to come to the aid of their
party.Now is the time for all
good people to come to the aid of their
party.Now is the time for a lot of
good people to come to the aid of their
party.Now is the time for all of the
good people to come to the aid of their
party.Now is the time for all good people
to come to the aid of theirattack at dawn
party. Now is the time for each
person to come to the aid of their
party.Now is the time for all good people
to come to the aid of their
party. Now is the time for all
good Republicans to come to the aid of
their party.Now is the time for all
good people to come to the aid of their
party. Now is the time for many or all
good people to come to the aid of their
party. Now is the time for all good people
to come to the aid of their
party.Now is the time for all good
Democrats to come to the aid of their
party.

4

Random pattern or text??

•
•

Simple, effective algorithm: return “NOT FOUND”
• probability of match is less than N/(alphabet size)M

Better to model fixed pattern in fixed text at random position

• swap patterns in sample problems 1 and 2 makes both OK

• use random perturbations to test mismatch

Modelling String Searching

Sample problem 1: find unwillingly in
 kvjlixapejrbxeenpphkhthbkwyrwamnugzhppfxiyjyanhapfwbghx
 mshrlyujfjhrsovkvveylnbxnawavgizyvmfohigeabgksfnbkmffxj
 ffqbualeytqrphyrbjqdjqavctgxjifqgfgydhoiwhrvwqbxgrixydz
 bpajnhopvlamhhfavoctdfytvvggikngkwzixgjtlxkozjlefilbrboi
 gnbzsudssvqymnapbpqvlubdoyxkkwhcoudvtkmikansgsutdjythzl

Sample problem 2: find avoctdfytvv in
 all the world’s a stage and all the men and women merely
 players. They have their exits and their entrances, and
 one man in his time plays many parts. At first, the infant,
 mewling and puking in the nurse’s arms. Then the whining
 schoolboy, with his satchel and shining morning face, creeping
 like snail unwillingly to school. And then the lover, sighing

.0000000000000084
for sample problems

random text

random pattern

5

Brute-force string searching

text loop

using array to simplify alg descriptions
online apps need getchar()-based implementation

pattern loop

match

mismatch

Check for pattern at every text position

int brutesearch(char p[], char a[])
 {
 int i, j;
 for (i = 0; i < strlen(a); i++)
 for (j = 0; j < strlen(p); j++)
 if (a[i+j] != p[j]) break;
 if (j == strlen(p)) return i;
 return strlen(a);
 }

• returns i if leftmost pattern occurence starts at a[i]
• returns N if no match

DO NOT USE THIS PROGRAM!

6

 for (i = 0; i < strlen(a); i++)

In C, strlen takes time proportional to string length
• evaluated every time through loop

• running time is at least N2

• same problem for simpler programs (ex: count the blanks)

PERFORMANCE BUG

Textbook example: Performance matters in ADT design

Exercise: implement string ADT with fast strlen
• need space to store length
• need to update length when changing string
• might slow down some other simple programs

Problem with brute-force implementation

7

Brute-force string searching (bug fixed)

text loop

pattern loop

lengths won’t change;
precompute them

Check for pattern at every text position

int brutesearch(char p[], char a[])
 { int M = strlen(p), N = strlen(a);
 int i, j;
 for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)
 if (a[i+j] != p[j]) break;
 if (j == M) return i;
 return N;
 }

• returns i if leftmost pattern occurence starts at a[i]
• returns N if no match

8

Brute-force typical case

pattern: xkhthbkwy
text: kvjlixkpejrbxeenppxkhthbkwy
 *
 *
 *
 *
 *
 xk*
 *
 *
 *
 *
 *
 *
 x*
 *
 *
 *
 *
 *
 xkhthbkwy

character compares: N+3

Can we guarantee performance?

9

Brute-force worst case

pattern: 000000001
text: 000000000000000000000000001
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 00000000*
 000000001

character compares: M*N

Too slow when M and N are large

Backs up in text:
 need to retain M-char buffer

10

Idea 1: Use hashing

• compute hash function for each text position

• NO TABLE needed: just compare with pattern hash

Example: search for 59265 in 31415926535897932384626433

pattern hash: 59265 = 95 (mod 97)

text hashes: 31415926535897932384626433
 31415 = 84 (mod 97)
 14159 = 94 (mod 97)
 41592 = 76 (mod 97)
 15926 = 18 (mod 97)
 59265 = 95 (mod 97)

Problem: Hash uses M characters, so running time is N*M

Rabin-Karp algorithm

11

Idea 2: Use hash for previous position to compute hash
 14159 = (31415 - 30000)*10 + 9

14159 mod 97 = (31415 mod 97 - 30000 mod 97)*10 + 9 (mod 97)

 = (84 - 3*9)*10 + 9 (mod 97)

 = 579 mod 97 = 94

Example: search for 59265 in 31415926535897932384626433
 pattern hash: 59265 = 95 (mod 97)
 text hashes for 31415926535897932384626433:
 31415 mod 97 = 84
 14159 mod 97 = (84 - 3*9)*10 + 9 (mod 97) = 94
 41592 mod 97 = (94 - 1*9)*10 + 2 (mod 97) = 76
 15926 mod 97 = (76 - 4*9)*10 + 6 (mod 97) = 18
 59265 mod 97 = (18 - 1*9)*10 + 5 (mod 97) = 95

Slight problem: Still need full compare on collisions

Easy fix: use giant (virtual) hash table.

Rabin-Karp algorithm (continued)

known from
previous position

precompute 9 = 10000 (mod 97)

Key point: all ops involve small numbers
No restriction on N and M

need table size >> N2 (birthday paradox)

12

#define q 3355439
#define d 256
int rksearch(char *p, char *a)
 { int M = strlen(p), N = strlen(a);
 int i, j, dM = 1, h1 = 0, h2 = 0;
 for (j = 1; j < M; j++)
 dM = (d*dM) % q;
 for (j = 0; j < M; j++)
 h1 = (h1*d + p[j]) % q;
 for (i = 0; i < M; i++)
 h2 = (h2*d + a[i]) % q;
 for (i = M; i < N; i++)
 {
 if (h1 == h2) return i-M;
 h2 = (h2 + d*q - a[i-M]*dM) % q;
 h2 = (h2*d + a[i]) % q;
 }
 return N;
 }

Implementation of Rabin-Karp algorithm

Example for
q = 97, d = 10

pattern hash

random q much larger than N2

q much smaller than (alphabet size)M

d*q smaller than max integer

radix hash

initial text hash

main search loop

10000 (mod 97) = 9
10*10*10*10

mod after each op

59265 (mod 97) = 95
Horner’s method

mod after each op

31415 (mod 97) = 84
Horner’s method

mod after each op

add d*q to keep
value positive

31415 (mod 97) = 84

 95 != 84

84 - 3*9 (mod 97) = 57

57*10 + 9 (mod 97) = 94

14159 (mod 97) = 94

13

A randomized algorithm uses random numbers to gain efficiency

• quicksort with random partitioning element

• randomized BSTs

• Rabin-Karp

Las Vegas algorithm

• expected to be fast

• guaranteed to be correct
Examples: quicksort, randomized BSTs, Rabin-Karp with match check

Monte Carlo algorithm

• guaranteed to be fast

• expected to be correct
Example: Rabin-Karp without match check

Randomized algorithms

14

String search implementations cost summary

Do we need the assumptions?

✝ assumes appropriate model
✝ assumes system can produce “random” numbers

Search for an M-character pattern in an N-character text

typical worst

brute-force N✝ N*M

Rabin-Karp N✝ N✝

Knuth-Morris-Pratt N N

Right-left scan N/M* N?

15

Observation: On mismatch at pattern char j we know the
 previous j-1 chars in the text (they are also in the pattern)

Idea: precompute what to do on mismatch

Example 1: mismatch 00000* when searching for 000001 in binary text

• text had 000000

• compare next text char with last pattern char

Example 2: mismatch 000* when searching for 000001 in binary text

• text had 0001

• compare next text char with first pattern char

KMP algorithm

• precompute table of pattern char to check on mismatch,
indexed by pattern position

• set pattern index from table in inner loop on mismatch
instead of always resetting to 0

Surprising solution to open theoretical and practical problem (1970s)

Knuth-Morris-Pratt algorithm

char to check is completely
deduced from pattern

16

KMP examples

 blue: match
 red: mismatch
black: implicit

0 1 2 3 4 5 6 7
0 1 0 1 3 0 2 1

mismatch table

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 7

mismatch table

pattern: 10100110
text: 100111010010101010100110000111
 10*
 1*
 1*
 101001*
 1010*
 1010*
 1010*
 10100110
 0120111234562343434345678

pattern: 00000001
text: 001000001000000000000001
 00*
 00000*
 0000000*
 0000000*
 0000000*
 0000000*
 0000000*
 0000000*
 0000000*
 00000001
 0120123450123456777777778

N character compares in every case

17

KMP implementation

text loop

pattern loop

lengths won’t change;
precompute them

Check for pattern at every text position

int kmpsearch(char p[], char a[])
 { int M = strlen(p), N = strlen(a);
 int i, j;
 for (i = 0; i < N; i++)
 for (j = 0; j < M; j++)
 if (a[i+j] != p[j]) break;
 if (j == M) return i;
 return N;
 }

• returns i if leftmost pattern occurence starts at a[i]
• returns N if no match

18

KMP implementation

Check for pattern at every text position
• char match: increment both i and j
• char mismatch: set j to mismatch[j]

(special case: j = 0, just increment i)

int kmpsearch(char p[], char a[], int mismatch[])
 { int M = strlen(p), N = strlen(a);
 int i, j = 0;
 for (i = 0; i < N && j < M; i++)
 if (a[i] == p[j]) j++; else j = mismatch[j];
 if (j == M) return i-M+1; else return N;
 }

Differs from brute-force in two very significant ways
• need to compute next table (stay tuned)
• text pointer never backs up

19

Table builds itself (!!)

Idea 1: Simulate restart ala brute-force

Ex: mismatch[6] for 10100110

• if mismatch at 101001* then text was 1010010

• for ...1010010x, x compares to p[2]

• note also: for ...1010011x, x compares to p[1]

Idea 2: Remember simulation for previous entry

Ex: mismatch[7] for 10100110

• if mismatch at 1010011* then text was 10100111

• just noted: for ...1010011x, x compares to p[1]

• for ...10100111x, x compares to p[1]

• for ...10100110x, x compares to p[2]

KMP mismatch table construction

pattern: 10100110
text: 010010x
 *
 10*
 10
 0012012

pattern: 10100110
text: 010011x
 *
 10*
 1*
 0012011

mismatch at p[1]

match at p[1]

0 1 2 3 4 5 6 7
0 1 0 1 3 0 2 1

mismatch table

100111010010101010100110000111
 101001*
 1010010110

20

mis[j]: index of pattern char to compare against next text char
 on mismatch on jth pattern character

 t: index of pattern char that brute-force algorithm would compare
 against next text char on iteration after mismatch

To compute mis[j], compare p[j] with p[t]

match:

• mismatch[j] = mismatch[t] since mismatch action same as for t

• t = t+1 since we know that brute-force algorithm will find match

mismatch: opposite assignment

KMP mismatch table construction implementation

0 1 2 3 4 5 6 7
1 1 1 0 0 1 1 0

j t
0 0

1 0 0 1
2 1 0 1 0
3 2 0 1 0 1
4 0 0 1 0 1 3
5 1 0 1 0 1 3 0
6 1 0 1 0 1 3 0 2
7 2 0 1 0 1 3 0 2 1

t = 0; mismatch[0] = 0;
for (int j = 1; j < M; j++)
 if (p[j] == p[t])
 { mismatch[j] = mismatch[t]; t = t+1; }
 else
 { mismatch[j] = t+1; t = mismatch[t]; }

Computation more complicated for nonbinary alphabet

21

Optimized KMP implementation

mismatch table

pattern 10100110

Easy to create specialized program for given pattern
 (build in mismatch table)

int kmpsearch(char a[])

 { int i = 0;

 s0: if (a[i] != '1') { i++; goto s0; }
 s1: if (a[i] != '0') { i++; goto s1; }
 s2: if (a[i] != '1') { i++; goto s0; }
 s3: if (a[i] != '0') { i++; goto s1; }
 s4: if (a[i] != '0') { i++; goto s3; }
 s5: if (a[i] != '1') { i++; goto s0; }
 s6: if (a[i] != '1') { i++; goto s2; }
 s7: if (a[i] != '0') { i++; goto s1; }

 return i-8;
 }

Ultimate search program for specific pattern:
 compile directly to machine code

22

String search implementations cost summary

typical worst

brute-force N✝ N*M

Rabin-Karp N✝ N✝

Knuth-Morris-Pratt N N

Right-left scan N/M* N?

KMP is optimal. Can we do better?

✝ assumes appropriate model
✝ assumes system can produce “random” numbers

Search for an M-character pattern in an N-character text

inner loop with several
arithmetic instructions

tiny inner loop

23

Sublinear algorithms

• move right to left in pattern

• move left to right in text

Q: Does binary string have 9 consecutive 0s?

pattern: 000000000
text: 100111010010100010100111000111
 0
 *
 *
 0
 0
 *
A: No. (Needed to look at only 6 of 30 chars.)

Idea effective for general patterns, larger alphabet

Search time proportional to N/M for practical problems

Time decreases as pattern length increases (!)

Right-left pattern scan

24

Right-left scan examples

Text char not in pattern: skip forward M chars
pattern: people
text: now is the time for all good people
 *
 *
 *
 *
 e
 l
 p
 o
 e
 p

Text char in pattern: skip to end of pattern
pattern: people
text: you can fool some of the people some of
 *
 *
 *
 o
 e
 l
 p
 o
 e
 p

Boyer-Moore algorithm:
 figure out best skip ala KMP

25

Implementation of right-left pattern scan

build skip table

main search loop

restart at right
end of pattern

right-to-left scan

initskip(char *p)
 { int j, M = strlen(p);
 for (j = 0; j < 256; j++) skip[j] = M;
 for (j = 0; j < M; j++) skip[p[j]] = M-j-1;
 }
#define max(A, B) (A > B) ? A : B;
int mischarsearch(char *p, char *a)
 { int M = strlen(p), N = strlen(a);
 int i, j;
 initskip(p);
 for (i = M-1, j = M-1; j >= 0; i--, j--)
 while (a[i] != p[j])
 {
 i += max(M-j, skip[a[i]]);
 if (i >= N) return N;
 j = M-1;
 }
 return i+1;
 }

26

String search implementations cost summary

typical worst

brute-force N✝ N*M

Rabin-Karp N✝ N✝

Knuth-Morris-Pratt N N

Right-left scan N/M ✝ N

Search for an M-character pattern in an N-character text

✝ assumes appropriate model
✝ assumes system can produce “random” numbers

beats optimal by a factor of 100 for M = 100

27

String search summary

Ingenious algorithms for a fundamental problem

Rabin-Karp

• easy to implement

• extends to more general settings (ex: 2D search)

Knuth-Morris-Pratt

• quintessential solution to theoretical problem

• works well in practice, too (no backup, tight inner loop)

Right-left scan

• simple idea leads to dramatic speedup for long patterns

Tip of the iceberg (stay tuned)

• multiple patterns?

• wild-card characters?

