Reductions

Princeton University · COS 226 · Algorithms and Data Structures · Spring 2003 · http://www.Princeton.EDU/~cs226

Linear Time Reductions

Problem X linear reduces to problem Y if X can be solved with:

- Linear number of standard computational steps.
- One call to subroutine for Y.
- Notation: $X \le Y$.

more generally, if given a O(f(N)) time subroutine for Y, can solve X in O(f(N)) time

Examples we've already seen in the course.

- Removing duplicates reduces to sorting.
- Voronoi diagram reduces to Delaunay triangulation.
- Arbitrage reduces to negative cycle detection.
- Bipartite matching reduces to max flow.
- Brewer's problem reduces to linear programming.

Other most common type of reduction.

- X polynomial reduces to Y.
- Stay tuned for NP-completeness.

Reduction

Problem X reduces to problem Y if given a subroutine for Y you can solve X.

- Cost of solving X = cost of solving Y + cost of reduction.
- May call subroutine for Y more than once.

Example.

- X = baseball elimination.
- Assignment 9

Y = max flow.

Consequences:

- Establish relative difficulty between two problems. (classify problems)
- Given algorithm for Y, can also solve X. (design algorithms)
- If X is hard, then so is Y. (establish intractability)

Problem Equivalence

Tool for classifying problems.

- Equivalence: If $X \leq_L Y$ and $Y \leq_L X$ then we write $X \equiv_L Y$.
 - given any algorithm for X, can solve Y in same running time, and vice versa
- Transitivity: if $X \leq_{L} Y$ and $Y \leq_{L} Z$ then $X \leq_{L} Z$.

PRIME: Given (the decimal representation of) an integer x, is x prime? COMPOSITE: Given an integer x, does x have a nontrivial factor?

Claim. COMPOSITE \equiv PRIME.

composite (x)

if (prime(x)) return false;
else return true;

COMPOSITE ≤ , PRIME

prime (x)

if (composite(x)) return false;
else return true;

 $PRIME \leq L COMPOSITE$

Reduction Gone Wrong

Caveat.

- System designer specs the interfaces for project.
- One programmer might implement composite() using prime().
- Another programmer might implement prime() using composite().
- Be careful to avoid infinite reduction loops in practice.

composite (x)

if (prime(x)) return false; else return true;

prime (x)

if (composite(x)) return false; else return true;

Primality Testing and Factoring

We established: $PRIME \leq_L COMPOSITE \leq_L FACTOR$.

Natural question: Does FACTOR ≤ L PRIME?

• Consensus opinion = no.

State-of-the-art.

- PRIME is in P.
- FACTOR not believed to be in P.

RSA cryptosystem.

- Based on dichotomy between two problems.
- To use RSA, must generate large primes efficiently.
- Can break RSA with efficient factoring algorithm.

Compositeness and Factoring

COMPOSITE: Given an integer x, does x have a nontrivial factor? FACTOR: Given two integers x and y, does x have a nontrivial factor less than y?

other than 1 and x

Claim. COMPOSITE ≤ FACTOR.

- Is 62,773,913 composite?
- Does 62,773,913 have a nontrivial factor less than 62,773,913?
- Yes, $62,773,912 = 7,919 \times 7,927$.

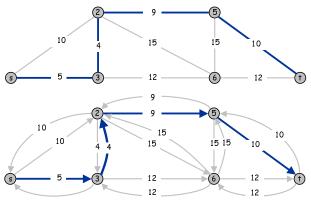
composite (x)

if (factor(x, x)) return true; else return false;

Undirected Shortest Path Reduces to Directed Shortest Path

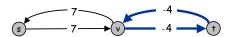
Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

- Replace each directed arc by two undirected arcs.
- Shortest directed path will use each edge at most once.



Shortest Path with Negative Costs

Caveat: Reduction invalid in networks with negative cost arcs, even if no negative cycles.



Remark: can still solve shortest path problem in undirected graphs if no negative cycles, but need more sophisticated techniques.

• Reduce to weighted nonbipartite matching. (!)

Reduction: Min Cut Reduces to Max Flow

Max-flow min-cut theorem says value of max flow = capacity of min cut.

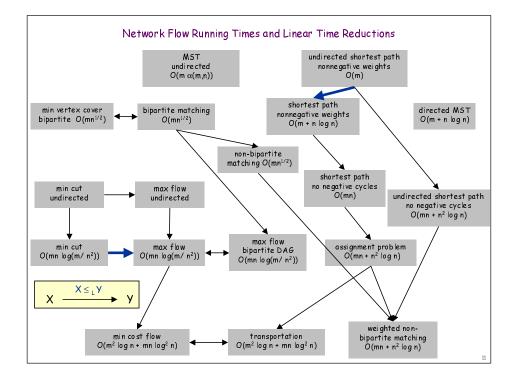
Min cut linear reduces to max flow.

• Given a max flow, find all vertices reachable from source in residual graph to get min cut.

Does max flow linear reduce to min cut?

- Apparently no easy way to determine max flow from min cut.
- But no better way known to compute a min cut than via max flow.

.



Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute $s \times t$.

Integer division: given two integers s and t of at most N digits each, compute the quotient $q = \lfloor s / t \rfloor$ and remainder $r = s \mod t$.

Operation	Grade School	Best Known Lower Bound
Addition	O(N)	Ω(N)
Multiplication	O(N ²)	Ω(N)
Division	O(N ²)	Ω(N)

Fundamental questions.

- Is multiplication easier than division?
- Is addition easier than multiplication?
- Is division easier than multiplication?

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute st.

Integer division: given two integers s and t of at most N digits each, compute the quotient $q = \lfloor s / t \rfloor$ and remainder $r = s \mod t$.

Operation	Best Known Upper Bound	Best Known Lower Bound
Addition	O(N)	Ω(N)
Multiplication	O(N log N log log N)	Ω(N)
Division	O(N log N log log N)	Ω(N)

Theorem. Integer multiplication and integer division have the same asymptotic complexity.

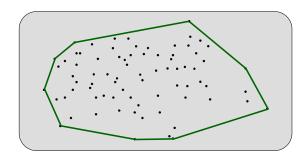
- Multiplication linear reduces to division.
- Division linear reduces to multiplication.

13

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in counter-clockwise order.



1

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in counter-clockwise order.

Lower bounds.

- \blacksquare Recall, under comparison-based model of computation, sorting N items requires $\Omega(N \text{ log } N)$ comparisons.
- We show sorting linearly reduces to convex hull.
- Hence, finding convex hull of N points requires $\Omega(N \log N)$ "comparisons" where comparison means ccw().

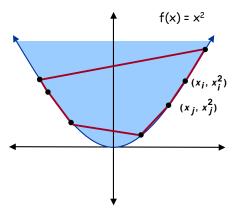
Sorting Reduces to Convex Hull

Sorting instance (integers):

$$x_1, x_2, \dots, x_N$$

Convex hull instance:

$$(x_1, x_1^2), (x_2, x_2^2), ..., (x_N, x_N^2)$$



Key observation.

- Region $\{x : x^2 \ge x\}$ is convex \Rightarrow all points are on hull.
- Starting at point with most negative x, counter-clockwise order of convex hull yields items in sorted order.

3-SUM Reduces to 3-COLLINFAR

3-SUM: Given N distinct integers x_1 , x_2 , ... x_N , are there 3 distinct integers x_i , x_i , x_k such that $x_i + x_i + x_k = 0$?

3-COLLINEAR: Given N distinct points $(x_1, y_1), (x_2, y_2), ... (x_N, y_N),$ are there 3 points that all lie on the same line?

, pattern recognition assianment

Conjecture: Any algorithm for 3-SUM requires $\Omega(N^2)$ time.

Claim. $3-SUM \leq_L 3-COLLINEAR$.

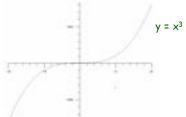
Corollary. Unless you can solve 3-SUM is sub-quadratic time, any algorithm for 3-COLLINEAR requires $\Omega(N^2)$ time.

Reduction. To determine if there is a solution to 3-SUM instance $x_1, x_2, ... x_N$, determine if there is a solution to 3-COLLINEAR instance with (x_1, x_1^3) , (x_2, x_2^3) , ..., (x_N, x_N^3) .

17

3-SUM Reduces to 3-COLLINFAR

Claim. If a, b, and c are distinct then a + b + c = 0 if and only if (a, a^3) , (b, b^3) , (c, c^3) are collinear.



Proof. Necessary and sufficient conditions for two line segments to be equal.

$$\frac{a^3 - b^3}{a - b} = \frac{b^3 - c^3}{b - c} \Leftrightarrow \frac{(a - b)(a^2 + 2ab + b^2)}{a - b} = \frac{(b - c)(b^2 + 2bc + c^2)}{b - c}$$

$$\Leftrightarrow c^2 + bc - a^2 - ab = 0$$

$$\Leftrightarrow (c - a)(c + a + b) = 0$$

$$\Leftrightarrow c = a \text{ or } a + b + c = 0$$

18

Polynomial-Time Reduction

X polynomial reduces to Y if X can be solved using:

- Polynomial number of standard computational steps.
- \blacksquare Polynomial number of calls to subroutine for Y.
- Notation: $X \leq_P Y$.

Alternate viewpoint. Can solve X in polynomial time given special piece of hardware that solves instances of Y in a single step.

no difference from polynomial in this context

Ex: Baseball elimination reduces to max flow.

• Solve N max flow problems on a graph with N^2 vertices.

Remark 1: If $X \leq_1 Y$ then $X \leq_P Y$.

Remark 2: If X can be solved in polynomial time, then $X \leq_P Y$ for any Y.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

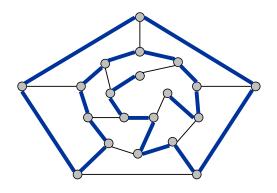
 Separate problems that can be solved in polynomial time from those that (probably) require exponential time.

Establish tractability. If $X \le_P Y$ and Y can be solved in polynomial-time, then X can be solved in polynomial time.

Establish intractability. If $X \le_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Hamilton Path

HAMILTON-PATH. Given an undirected graph, is there a path that visits every vertex exactly once?



EULER-PATH. Given an undirected graph, is there a path that visits every EDGE exactly once?

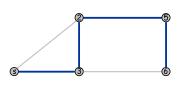
Hamilton Path Reduces to Shortest Path

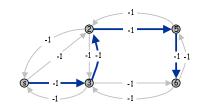
HAMILTON-PATH. Given an undirected graph, is there a path that visits every vertex exactly once.

SHORTEST-PATH. Given an directed graph and two vertices s and t, find the shortest simple path from s to t.

Claim. HAMILTON-PATH ≤ p SHORTEST-PATH.

- For each undirected edge, make two directed edges of weight -1.
- For all pairs of vertices v and w, find shortest path from v to w.
- If shortest path has length -(V-1) then this is a Hamilton path.





2

Hamilton Path Reduces to Shortest Path

Claim. HAMILTON-PATH ≤ p SHORTEST-PATH.

Conjecture. No polynomial algorithm exists for HAMILTON-PATH.

Corollary. Polynomial algorithm for SHORTEST-PATH is unlikely.

 This explains why we needed the "no negative cycles" assumption for shortest path algorithms.

Shortest Path	Algorithm	Running Time
Nonnegative weights	Dijkstra	E log V
No negative cycles	Bellman-Ford	ΕV
Arbitrary weights	Brute force	2 ^V

Subset Sum Reduces To Integer Programming

SUBSET-SUM. Given N integers a_1 , a_2 , ... a_N , and another integer b, is there a subset of integers that sums to exactly b?

password cracking assignment

Integer programming. Given integers b_i , a_{ij} find 0/1 variables x_i that satisfy a linear system of equations.

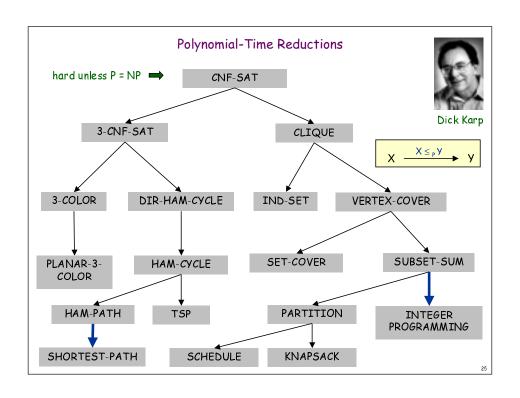
$$\sum_{j=1}^{N} a_{ij} x_{j} = b_{i} \qquad 1 \le i \le M$$

$$x_{j} \in \{0,1\} \qquad 1 \le j \le N$$

SUBSET-SUM polynomial reduces to IP. Solve integer program below and select subset of indices with x = 1.

$$\sum_{j=1}^{N} a_j x_j = b$$

$$x_j \in \{0, 1\} \qquad 1 \le j \le N$$



NP-Completeness

- P. Set of all decision problems solvable in polynomial time on a deterministic Turing machine.
- NP. Set of all decision problems solvable in polynomial time on a nondeterministic Turing machine.

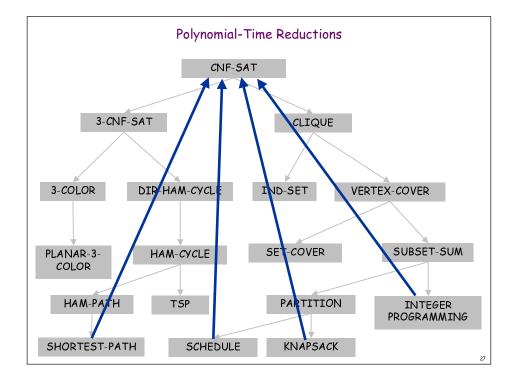
NP-complete. Decision problem X is NP-complete if EVERY problem in NP polynomial reduces to X.

Cook's theorem. CNF-SAT is NP-complete.

Corollary. If $P \neq NP$, then no polynomial algorithm for CNF-SAT.

Practical consequence. If $P \neq NP$, then can't hope to design polynomial algorithm for any problem on the previous slide.

20



Summary

Reductions are important in theory to:

- Classify problems according to their computational requirements.
- Establish intractability.
- Establish tractability.

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules.
 - sorting, priority queue, symbol table, regular expressions
 - shortest path, max flow, min cost flow, linear programming
- Determine difficulty of your problem and choose the right tool.
 - use exact algorithm for tractable problems
 - use heuristics for NP-hard problems
 - bin packing assignment