Reductions

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226

Reduction

Problem X reduces to problem Y if given a subroutine for ¥ you can solve X.
. Cost of solving X = cost of solving Y + cost of reduction.
. May call subroutine for Y more than once.

Example.
. X = baseball elimination. 4@ Assignment 9
. Y = max flow.

Consequences:
. Establish relative difficulty between two problems. (classify problems)
. Given algorithm for Y, can also solve X. (design algorithms)
. If Xis hard, then so is Y. (establish infractability)

Linear Time Reductions

Problem X linear reduces to problem Y if X can be solved with:
. Linear number of standard computational steps.
. One call to subroutine for Y. N

. Notation: X< V. more generally, if given a O(f(N)) time
subroutine for Y, can solve X in O(f(N)) time

Examples we've already seen in the course.
. Removing duplicates reduces to sorting.
. Voronoi diagram reduces to Delaunay triangulation.
. Arbitrage reduces to negative cycle detection.
. Bipartite matching reduces to max flow.
. Brewer's problem reduces to linear programming.

Other most common type of reduction.
. X polynomial reduces to Y.
. Stay tuned for NP-completeness.

Problem Equivalence

Tool for classifying problems.

. Equivalence: If X< Y andY < X thenwe write X = V.

- given any algorithm for X, can solve Y in same running time,
and vice versa

. Transitivity: if X< YandY < Z then X< Z.

PRIME: Given (the decimal representation of) an integer x, is x prime?
COMPOSITE: Given an integer x, does x have a nontrivial factor?

Claim. COMPOSITE = PRIME.

composite (x)

if (prine(x)) return false; if (conposite(x)) return false;
el se return true; el se return true;
COMPOSITE < | PRIME

PRIME < | COMPOSITE

Reduction Gone Wrong Compositeness and Factoring

Caveat. COMPOSITE: Given an integer x, does x have a nontrivial factor?

. System designer specs the interfaces for project. FACTOR: Given two integers x and y, does x have a nontrivial factor
. One programmer might implement conposi t e() using pri ne(). less than y? X

. Another programmer might implement pri ne() using conposite().
. Be careful to avoid infinite reduction loops in practice. Claim. COMPOSITE <| FACTOR.

. Is 62,773,913 composite?

. Does 62,773,913 have a nontrivial factor less than 62,773,913?
. Yes, 62,773,912 =7,919 x 7, 927.

other than 1 and x

composite (x)

if (factor(x, x)) return true;

: el se return fal se;
composite (x)
if (prinme(x)) return false; if (conposite(x)) return false;
el se return true,; el se return true;
Primality Testing and Factoring Undirected Shortest Path Reduces to Directed Shortest Path
We established: PRIME <, COMPOSITE <, FACTOR. Undirected shortest path (with nonnegative weights) linearly reduces
to directed shortest path.
Natural question: Does FACTOR < | PRIME ? . Replace each directed arc by two undirected arcs.
. Consensus opinion = no. . Shortest directed path will use each edge at most once.
State-of-the-art. z 9 @\
. PRIME isinP.
. . 10 4 15 15 10
FACTOR not believed to be in P.

RSA cryptosystem. ® ° £ . ® 12\

. Based on dichotomy between two problems. i
(:)—— 9 —p(5
. Touse RSA, must generate large primes efficiently. \ C\
15 10
15

10
. Can break RSA with efficient factoring algorithm. 1515 g0

10 A
© — 5-»4 12 ® 12\@

12 12

Shortest Path with Negative Costs

Caveat: Reduction invalid in networks with negative cost arcs, even if
no negative cycles.

O—7T—O—4—0

S

Remark: can still solve shortest path problem in undirected graphs if
no negative cycles, but need more sophisticated techniques.

Reduce to weighted nonbipartite matching. (!)

Reduction: Min Cut Reduces to Max Flow

Max-flow min-cut theorem says value of max flow = capacity of min cut.

Min cut linear reduces to max flow.

Given a max flow, find all vertices reachable from source in residual
graph to get min cut.

Does max flow linear reduce to min cut?
Apparently no easy way to determine max flow from min cut.
But no better way known to compute a min cut than via max flow.

Network Flow Running Times and Linear Time Reductions

MST undirected shortest path
undirected nonnegative weights
O(m a(m,n)) O(m)

shortest path
nonnegative weights
O(m + n log n)

non-bipartite
matching O(mn'/2)

shortest path

directed MST
O(m + n log n)

min vertex cover bipartite matching
bipartite O(mnt/?) +—» O(mn'/?)

min cut max flow no negative cycles
undirected —® undirected O(mn) undirected shortest path
no negative cycles
l l \ O(mn + n? log n)
. max flow ;
min cut max flow bipartite DAG assignment problem

O(mn log(m/ r2)) =P O(mn log(m/ r2)) +—> O(mn log(m/ n?) O(mn + n? log n)

X< Y
X — Y

" weighted non-
min cost flow transportation bipartite matching
O(m? log n + mn log? n) < > om? log n + mn log? n) O(mn + n? log n)

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute s x 1.

Integer division: given two integers s and t+ of at most N digits each,
compute the quotient q = 3 / tUand remainder r = s mod t.

Operation Grade School Best Known Lower Bound
Addition O(N) Q(N)
Multiplication O(N?) Q(N)
Division O(N?) Q(N)

Fundamental questions.
TIs multiplication easier than division?
Is addition easier than multiplication?
Is division easier than multiplication?

Integer Arithmetic

Integer multiplication: given two N-digit integer s and t, compute st.

Integer division: given two integers s and t+ of at most N digits each,
compute the quotient q = 3 / tUand remainder r = s mod t.

Operation Best Known Upper Bound Best Known Lower Bound

Addition O(N) Q(N)
Multiplication O(N log N log log N) Q(N)
Division O(N log N log log N) Q(N)

Theorem. Integer multiplication and integer division have the same
asymptotic complexity.

. Multiplication linear reduces to division.

. Division linear reduces to multiplication.

Sorting and Convex Hull

Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in
counter-clockwise order.

(N

Sorting and Convex Hull
Sorting. Given N distinct integers, rearrange in increasing order.

Convex hull. Given N points in the plane, find their convex hull in
counter-clockwise order.

Lower bounds.

. Recall, under comparison-based model of computation, sorting N
items requires Q(N log N) comparisons.

. We show sorting linearly reduces to convex hull.

. Hence, finding convex hull of N points requires Q(N log N)
"comparisons" where comparison means ccw().

Sorting Reduces to Convex Hull

Sorting instance (integers):

A = x2
X1, X2, ... XN f(x) X

Convex hull instance:

2 2 2
(X, X7), (X2, x3), .. (xn, Xpy)

A

Key observation.
. Region {x : x2 = x} is convex O
all points are on hull. v

. Starting at point with most negative x, counter-clockwise order of
convex hull yields items in sorted order.

3-SUM Reduces to 3-COLLINEAR

3-SUM: Given N distinct integers x;, X,, .. X, are there 3 distinct
integers x;, X;, X, such that x; + x; + x, =0?

3-COLLINEAR: Given N distinct points (x;, y;), (X2, ¥2), - (Xn, Yn).
are there 3 points that all lie on the same line?

pattern recognition
assignment

Conjecture: Any algorithm for 3-SUM requires Q(N?) time.
Claim. 3-SUM < 3-COLLINEAR.

Corollary. Unless you can solve 3-SUM is sub-quadratic time, any
algorithm for 3-COLLINEAR requires Q(N?) time.

Reduction. To determine if there is a solution to 3-SUM instance
Xy, X5, .. Xy, determine if there is a solution to 3-COLLINEAR instance
with (X, X:3), (x5, X53), ..., (X, Xp3)-

3-SUM Reduces to 3-COLLINEAR

Claim. If a, b, and ¢ are distinct thena+b + ¢ =0 if and only if (a, @3),
(b, b3), (c, c3) are collinear.

y=x3

Proof. Necessary and sufficient conditions for two line segments to be
equal.

a’-b° b*-c - (a-b)(a*+2ab+b*) _ (b-c)(b*+2bc+c?)

a-b b-c a-b b-c
= c?+bc-a®-ab=0
- (c-a)(c+a+b)=0
- c=a or a+b+c=0

Polynomial-Time Reduction

X polynomial reduces to Y if X can be solved using:
. Polynomial number of standard computational steps.
. Polynomial number of calls to subroutine for VY.
. Notation: X<pV.

Alternate viewpoint. Can solve X in polynomial time given special piece
of hardware that solves instances of Y in a single step.

no difference from polynomial in this context

Ex: Baseball elimination reduces to max flow.
. Solve N max flow problems on a graph with N2 vertices.

Remark 1: If X< Y then X<, V.
Remark 2: If X can be solved in polynomial time, then X <, Y for any VY.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

. Separate problems that can be solved in polynomial time from those
that (probably) require exponential time.

Establish fractability. If X <, Y and Y can be solved in polynomial-time,
then X can be solved in polynomial time.

Establish intractability. If X <p Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Hamilton Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once?

EULER-PATH. Given an undirected graph, is there a path that visits
every EDGE exactly once?

21

Hamilton Path Reduces to Shortest Path

HAMILTON-PATH. Given an undirected graph, is there a path that
visits every vertex exactly once.

SHORTEST-PATH. Given an directed graph and two vertices s and t,
find the shortest simple path from s to t.

Claim. HAMILTON-PATH <, SHORTEST-PATH.
. For each undirected edge, make two directed edges of weight -1.
. For all pairs of vertices v and w, find shortest path from v to w.
. If shortest path has length -(V-1) then this is a Hamilton path.

Hamilton Path Reduces to Shortest Path

Claim. HAMILTON-PATH <, SHORTEST-PATH.
Conjecture. No polynomial algorithm exists for HAMILTON-PATH.
Corollary. Polynomial algorithm for SHORTEST-PATH is unlikely.

. This explains why we needed the "no negative cycles" assumption for
shortest path algorithms.

Shortest Path Algorithm Running Time
Nonnegative weights Dijkstra E log V
No negative cycles Bellman-Ford EV
Arbitrary weights Brute force 2Y

Subset Sum Reduces To Integer Programming

SUBSET-SUM. Given N integers a;, a,, .. ay, and another integer b, is

i ?
there a subset of integers that sums to exactly b? & password cracking

assighment

Integer programming. Given integers by, a;; find 0/1 variables x; that
satisfy a linear system of equations.

N
Za“x] = bi 1<isM
=1

Xj 0O {01} 1<j<N

SUBSET-SUM polynomial reduces fo IP. Solve integer program below
and select subset of indices with x, = 1.

N - b
Z_GJXJ =
J=1

x; O {0, 1} 1<sjsN

J

Polynomial-Time Reductions

hard unless P = NP ==y CNF-SAT
3-CNF-SAT CLIQUE

A /\Ax X,y

3-COLOR DIR-HAM-CYCLE IND-SET VERTEX-COVER
PLANAR-3- HAM-CYCLE SET-COVER SUBSET-SUM

HAM-PATH TSP PARTITION INTEGER
‘ PROGRAMMING
SHORTEST-PATH SCHEDULE KNAPSACK

NP-Completeness

P. Set of all decision problems solvable in polynomial time on a
deterministic Turing machine.

NP. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

NP-complete. Decision problem X is NP-complete if EVERY problem in
NP polynomial reduces to X.

Cook's theorem. CNF-SAT is NP-complete.
Corollary. If P # NP, then no polynomial algorithm for CNF-SAT.

Practical consequence. If P # NP, then can't hope to design polynomial
algorithm for any problem on the previous slide.

Polynomial-Time Reductions

CNF-SAT

3-CNF-SAT

3-COLOR DIRFHAM-CYCLE VERTEX-COVER
PLANAR-3- HAM-CYCLE SUBSET-SUM
COLOR

TSP INTEGER

PROGRAMMING

SHORTEST-PATH SCHEDULE KNAPSACK

Summary

Reductions are important in theory to:

. Classify problems according to their computational requirements.
. Establish intractability.

. Establish tractability.

Reductions are important in practice to:

. Design algorithms.

. Design reusable sof tware modules.
- sorting, priority queue, symbol table, regular expressions
- shortest path, max flow, min cost flow, linear programming

. Determine difficulty of your problem and choose the right tool.
- use exact algorithm for tractable problems
- use heuristics for NP-hard problems

bin packing assignment

31

