Priority Queues

Priority Queue ADT
Heaps and Heapsort
Binomial Queues

ADTs and algorithms

Abstract data types (ADTs)

Separate interface and implementation so as to
* build layers of abstraction
* reuse software

Ex: pushdown stack, FIFO queue

interface: description of data type, basic operations
client: program using operations defined in interface

implementation: actual code implementing operations

Client can't know details of implementation
* therefore has many implementations to choose from
Implementation can't know details of client needs

* therefore many clients can use the same implementation

Basic Priority Queue ADT

clients

Performance matters!

\
ADT allows use of better algorithm NA

Tdealized scenario
* design general-purpose ADT useful for many clients

* develop efficient implementation of all ADT functions

DT

algorithms

—
(without any change to client) _ /// \ \\\

Each ADT provides a new level of abstraction Ex:

client

quicksort

Total cost depends on

stack

* ADT implementation (algorithm)

linked list

* client usage pattern

Might need different implementations for different clients

Records with keys (priorities)
basic operations

* insert

® remove IC(I"QZST " can substitute smallest for clarity but not both in same client
* create . generic operations

o test if empty " common to many ADTs

° - hot needed for one-time use

. but critical in large systems

Example clients

. . PQ h
* simulation “void PQRit():
* numerical computation void PQ nsert(ltem;
. I'tem PQdel max/ m n();
* data compression _ int PQenpty():
* graph searching + stay funed PQ interface in C

PQ example PQ client example

Problem: Find the largest M of a stream of N elements

insert E .
g - E Example application: Fraud detection (isolate $$ transactions)
insert X w=p E X
insert A
insert A v : E X A Constraint: May not have memory to store N elements
E A remove largest wp X
insert M # ! E A M Solution: Use a priority queue foqr ni(tk():; 0. k < M kt+)
E A remove largest =) M PQ nsert (nextlten()):
insert P = _E A P fo; (k =M k <N k++)
insert L wap E A P L time |space fi”;&;f&?ﬁ;;?e"{)); | oddnext
E A L remove largest wsp P elementaryPQ | NM | M } ’
. . heap/BQ NigM | M for (k = 0; k <M k++) oo
nsertE=p E A L E select N | N alk] = PQuel nin(); efronr
E A E remove largest == L
A E remove largest wp E
[A remove largest _’ E Ex: top 10,000 in a stream of 1 billion
not possible without good algorithm (also can adapt select)
remove largest = A
5 6
Unordered-array PQ implementation PQ implementations cost summary
static ltem *pq;
static int N Worst-case asymptotic costs for a PQ with N items
"PQ nsert(ltemv) insert) remove
{ palN++] = v; } insert nax
I'tem PQdel max() remove largest ordered array N 1
{
int j, max = 0; ordered list N 1
for (j =1,] <N j+4) find
if (less(pg[mex], pa[j])) max = j; max unordered array 1 N
exch(pg[max], pq[N); ,
return pq[--N; unordered list 1 N
some other
} impler:nen:cﬁons
“voi d PQ nit (| nt naxN) need sentinel create
{ pg = mall oc((nmaxN+l)*si zeof (Item); N = 0; }
“int PQenpty() test if empty

{ return N==0; }

Can we implement both operations efficiently?

7 8

Heap Heap properties

Largest key is at root
Heap: Array representation of a heap-ordered complete binary tree

Binary tree
* null or .
Can use array indices to move through tree
* node with links complete tree: .
to left and right trees balanced except * parent of node af k is af k/2

for bottom level * children of node at k are at 2k and 2k+1

1/12|3|4|5|6|7|8|9]|10]11]12
X|T|O|6|S|M|[N|A|E|R|A|TI

Heap-ordered binary tree

* keys in nodes

* no smaller than Length of path in N-node heap is at most ~Ig N

children’s keys

1
n levels when 2" <N« 2“+1 2
3
Array representation n<lgN<n+l .
* take nodes in level order 112|3|4|5|6(7|8[9[10]|11]12 ~Ig N levels 2"1 nodes
. x| T 6|s|M|N E|R|A|TI n1
* no explicit links oM rodes "
9 10 .
Promotion (bubbling up) in a heap Demotion (sifting down) in a heap

Suppose that a node at the bottom is larger than its parent Suppose that a node at the top is smaller than a child

Tnvariant: Heap condition violated only at that node Invariant: Heap condition violated only at that node

To eliminate the violation To eliminate the violation

* exchange with parent * exchange with larger child
* maintains invariant (why?) * maintains invariant (why?)
* moves up the tree * moves down the tree

« continue until node not larger than parent ¢ continue until node not smaller than children

sink(Itemal], int k, int N children of node at k
] { int J; * are af 2k and 2k+1
swin(ltemal[], int k) while (2*k <= N)
{] = 2*k;

if (] <NG&&Iless(a a[j +1])) | ++;

while (k > 1 & less(a[k/2], a[k])) S it [][J)ib .
i Iless(a[k], a[j reak;

{ exch(a[k], a[k/2]); k = k/2; }

} exch(a[k], a[j]); k =j;
. ‘ }
parent of node at k is at k/2 }
Peter pr‘inciple: 112(3[4|5|6|7|8|9]|10(11|12|13 112|3(4|5|6|7|8|9]|10(11|12
node rises to level of incompetence X|T|O|6|S|M|INJA|E|R|A|T|P Power struggle: better subordinate promoted o|T|x|6|s|P|N|A|E|R|A|T
" X|T|P|G6G|S|O[N|A|E[R|A[I M 12 X|T G O|N|A|E|R|A|TI

Heap-based PQ implementation

insert
add node at end, then promote
remove largest
exchange root with node at end, then sift down

static ltem *pq;

static int N

void PQ nit(int maxN);
int PQenpty();

"PQ nsert(ltemv)

" same as elementary insert
array-based

[x[t[o]e]s[m][n][a]e]r]a]T P

PQ implementations cost summary

{ pa[N++] = v; swin(pg, N); }

[xI[T[rlels[o[n[a[E[R[A[r[M]

" 1tem PQdel max()

remove largest

{
exch(pg[1], pa[N);
sink(pg, 1, N-1);
return pgq[N--1;
} [T[s[rle]r[o[N[AE[M]A]T X

Digression: Heapsort

First pass: build heap
add item to heap at each iteration, then sift up
(or can use faster bottom-up method; see book)
Second pass: sort
remove maximum at each iteration
exchange root with node at end, then sift down

#defi ne pq(A) a[L-1+A]
voi d heapsort(ltemal[], int L, int R
{ int k, N=r-|+1;
for (k = 2; k <= N, k++) build
swi n(&pq(0), K); heap
while (N > 1)
{ exch(pq(1), pa(N);
si nk(&pqg(0), 1, --N);

remove
maximum;
sift down

Worst-case asymptotic costs for a PQ with N items

. remove
insert
max
ordered array N 1
ordered list N 1
unordered array 1 N
unordered list 1 N
heap Ig N Ig N

Significance of Heapsort

[] inthe heap

D not in the heap
E|X|A|M|P|L]J|E
E|X|A|M|P|L]|E
X|E[|A|M|P|L|E
X|E[A|M|P|L|E
X| M| A|E|P|L|E
X|PIA|JE|M|L|E
X|PIL|E|M|A|E
X|P|L|E|M|A|E
PIM|L|E|E]|A|X
MIE|L|IAJE|P]|X
LIE|E|A|IM|P|X
E|A|E|L|M|P|X
E|A|E|L | M|P]|X
A|E|JE|L|M|P|X
A|lE|JE|L|M|P|X

Q: Is there a sort that uses
* O(N log N) running time in the worst case and
* no extra memory ?

A: Yes. Heapsort.

Not mergesort?

* O(N) extra space

* (challenge for the bored: design an inplace merge)
Not quicksort?

* quadratic in worst case (but probabilistic guarantee is as good)

* O(log N) extra space (not an issue in practice)

Heapsort is OPTIMAL for both fime and space, BUT
* inner loop longer than quicksort's
* makes poor use of cache memory

16

Event-based simulation

PQ for event-based simulation

Challenge: Animate N moving particles
* each has given velocity vector

* bounce off edges, one another on collision
Example applications: molecular dynamics, traffic, ...

Naive approach: t times per second
* update particle positions
* check for collisions, update velocities

* redraw all particles

Problems:

Nz‘r collision checks per second

* may miss collisions

Extending the Priority-Queue ADT

Approach: Use PQ of events with time as key

* put collision event on PQ for each particle
(calculate time of next collision as priority)

* put redraw events on PQ (t per second)
Main loop: Remove next event from PQ
* redraw: update positions and redraw

* collision: update velocity of affected particle(s)
and put new collision events on PQ

More PQ operations needed:
* may need to remove items from PQ

* may want to join PQs for different sets of events
(Ex: join locals to national for air traffic control)

More sophisticated PQ interface needed

18

Extended Priority-Queue ADT

Records with keys (priorities)
Full set of operations

"* creatfe
* testif empty . generic operations
* destroy for first-class ADTs
* copy
* insert

remove largest
remove

. operations that
characterize PQs

* find IGPQQST . other operations that
= chcmge key many clients need

* join
New operations complicate the interface

* need to refer to items in PQ for remove, change key

* need to refer to PQs for destroy, copy, and join

* while still maintaining separation between client and implementation

Object-oriented programming (OOP)

19

Records with keys (priorities)
Full set of operations
" create PQull.h

pointers to structures
to be specified in
implementation

(Read Sections 4.8 and 4.9)

test if empty
destroy

copy

insert

remove largest
remove

. generic operations
for first-class ADTs

. operations that
characterize PQs

typedef struct pg* PQ
typedef struct PQnode* PQ i nk;
PQ PQ nit();
int PQenpty(PQ;
PQink PQ nsert(ltemPQ;
I tem PQdel max(PQ ;
voi d PQchange(PQ PQink, lten);
voi d PQdel et e(PQ PQ i nk) ;
PQ PQ oi n(PQ PQ;

First-class PQ interface in C

* find 'GPQQST . other operations that
J change key many clients need

* join

Handle implementation in C: use pointers to unspecified structures

* aPQis a pointer to a pq struct
e aPQink is apointer to a PQnode struct

* no way for client to know pq and PQnode implementations

Note: solution easier in OOP languages like Java and C++ because primitives are built in

20

PQ challenge: join two heaps

PQ PQ oi n(PQ a, PQ b)

first arg

second arg

3
0, (B)
w v @

2|13]4|5]|6

H
N}
w
S
o
o
~

> |
©
=
o
—
=
-
N}
—

13114|15|16 (17|18

Would it help to use linked structures?
Hard to beat trivial algorithm (rebuild the whole heap)

21

Binomial Queue

Binomial queue with N nodes: forest of left-heap-ordered power-
of-2 trees, one for each term in the binary decomposition of N
power-of-two tree (pott): binary tree with
. complete empty
e empty right subtree
* complete left subtree
left-heap-ordered pott (lhopott)

* key in each node

SisOKinR's
- right subtree
* no smaller than

all keys in left subtree

W) ®
binary decomposition: =
e sum of distinct powers of 2 no 2-tree
* direct from binary representation 8-free 4-tree l-tree
Ex:13:11012=8+4+1 © @) O
®REC ©©O ¢ ©®

Ihopott is binary-tree representation & 06 O
of heap-ordered general tree ®

heap-ordered trees
23

First-class PQ implementations cost summary

New operations introduce new algorithmic challenges

. remove find change o
insert remove Join
max max key
ordered array N 1 N 1 N N
ordered list N 1 1 1 N N
unordered array 1 N 1 N 1 N
unordered list 1 N 1 N 1 1

heap Ig N Ig N IgN 1 Ig N @

Can we implement all the operations efficiently?

22

Binomial queue properties

Largest key is at one of the roots

Can use links to move down tree

struct PQnode
{ Itemkey; PQink I, r; };

~Ig N trees in N-node BQ struct pg { PQink *bg; };
* ~Ig N links to represent BQ
Length of path in N-node BQ is at most ~Ig N

* two links per node

path length in 2" tree is (n+1)

n trees

. l.node
height 2 nodes

n+l n 2"-2 nodes
2 -1nodes -

2" nodes
24

Joining two equal-sized lhopotts Joining two binomial queues

Mimic addition of corresponding binary numbers

A constant-time operation " PQink pair(PQink p, PQink q)
« take larger of two roots as root { IPfQ' I(lnzsts(p ey, q->key)) * adding 1 bits corresponds to joining equal-sized lhopotts
« combine other root, two subtrees o iep- > =g->; g-> =p; return q; } e 1+1=10 or 1+1 + 11 corresponds to carry
to make complete lho left subtree : { a->r =p->; p-> =gq; return p; } * result is a BQ whose size is sum of operand sizes
* result is lho if arguments are lho
| R
carries = 1
nodes @ H
per level @ 0
. .
3 3 first operand = @% ®

w

[EEN

1 + 7 second operand =) | 9 @. @& @ + 1
1 " d
| o o o
1 0

- cos;??:i‘;"rs.‘ 26
Joining two binomial queues (code) BQ-based PQ implementation
Not much more difficult than binary addition! Join provides basis for all the implementations
cai‘y
" 4define test(C, B, A) 4%(Q) + 2*(B) + 1*(A) insert:
void PQ oin(PQink *a, PQink *b) case|c|bla| |af c * join singleton BQ
{int i; PQink ¢ = z; 0 |0|0]|0 al 0
for (i =0; i < maxBQsize; i++) remove maximum:
switch(test(c !'= 2z, b[i] '= 2z, a[i] !'= 2)) 1 (0|01 al O . .
{ ¢ scan roots to find max, remove its tree
e L 2 [0)1101 b1 O * join children of max with rest of BQ
case 3: ¢ = pair(a[i], b[i]) 3 |o|1]1] |o]ab J
a[i] = z; break; change priority:
case 4: a[i] = c; ¢ = z; break 4 |1]0)0] jc]© gep Y
‘case 5: ¢ = pair(c, a[il]); 5 |[1/0]1]| |o]arc * demote, promote as with heaps
a[i] = z; break
R 6 |1]1]0| |0]|b+c remove:
} case 7: ¢ = pair(c, b[i]); break; 7 |1[1]1] Ja|bre * replace removed node with max in its tree
} TH * join children of max with rest of BQ
resu

27 28

PQ implementations cost summary

Worst-case asymptotic costs for a PQ with N items

. remove find change .
insert remove Join
max max key
heap Ig N Ig N IgN 1 IgN N

binomial queue Ig N Ig N IgN Ig N Ig N

29

PQ implementations cost summary

Priority Queues: Summary

Worst-case asymptotic costs for a PQ with N items

. remove find change -
insert remove Join
max max key

binomial queue Ig N Ig N Ig N Ig N Ig N IgN

best in theory 1 Ig N Ig N 1 1 1

Algorithms have been invented that méet these bound.s,
BUT it is difficult to beat BQs in practice

31

Algorithm-design success story

PQ ADT

* identifies a useful computational abstraction

Heap

* provides efficient implementations of basic operations

Binomial queue

* provides efficient implementations of all operations

Ingenenious fundamental data structures

Surprising fact: there is still room for improvement!

30

