
Priority Queue ADT
Heaps and Heapsort

Binomial Queues

Priority Queues

2

Separate interface and implementation so as to

• build layers of abstraction

• reuse software

Ex: pushdown stack, FIFO queue

interface: description of data type, basic operations

client: program using operations defined in interface

implementation: actual code implementing operations

Client can't know details of implementation

• therefore has many implementations to choose from

Implementation can't know details of client needs

• therefore many clients can use the same implementation

Abstract data types (ADTs)

3

Performance matters!

ADT allows use of better algorithm

 (without any change to client)

Idealized scenario

• design general-purpose ADT useful for many clients

• develop efficient implementation of all ADT functions

Each ADT provides a new level of abstraction

Total cost depends on

• ADT implementation (algorithm)

• client usage pattern

Might need different implementations for different clients

ADTs and algorithms

client

quicksort

stack

linked list

ADT

clients

algorithms

Ex:

4

Records with keys (priorities)
basic operations
• insert
• remove largest
• create
• test if empty
• destroy
• copy

Example clients
• simulation
• numerical computation
• data compression
• graph searching

Basic Priority Queue ADT

not needed for one-time use
but critical in large systems

stay tuned

void PQinit();
void PQinsert(Item);
Item PQdelmax/min();
 int PQempty();

PQ.h

PQ interface in C

generic operations
common to many ADTs

can substitute smallest for clarity but not both in same client

5

E
E X
E X A
E A
E A M
E A
E A P
E A P L
E A L
E A L E
E A E
A E
A

PQ example

insert E

insert X

insert A

insert M

insert P

insert L

insert E

remove largest X

remove largest

remove largest

remove largest

remove largest

remove largest

remove largest

M

P

L

E

E

A
6

PQ client example

Problem: Find the largest M of a stream of N elements

Example application: Fraud detection (isolate $$ transactions)

Constraint: May not have memory to store N elements

Solution: Use a priority queue

time space
elementary PQ NM M

heap/BQ N lgM M
select N N

PQinit();
for (k = 0; k < M; k++)
 PQinsert(nextItem());
for (k = M; k < N; k++)
 {
 PQinsert(nextItem());
 t = PQdelmin();
 }
for (k = 0; k < M; k++)
 a[k] = PQdelmin();

add next
discard smallest

M largest
left on PQ

Ex: top 10,000 in a stream of 1 billion
not possible without good algorithm (also can adapt select)

7

Unordered-array PQ implementation

insert

remove largest

create

find
max

test if empty

static Item *pq;

static int N;

PQinsert(Item v)

 { pq[N++] = v; }

Item PQdelmax()

 {

 int j, max = 0;

 for (j = 1; j < N; j++)

 if (less(pq[max], pq[j])) max = j;

 exch(pq[max], pq[N]);

 return pq[--N];

 }

void PQinit(int maxN)

 { pq = malloc((maxN+1)*sizeof(Item)); N = 0; }

int PQempty()

 { return N == 0; }

some other
implementations
need sentinel

8

PQ implementations cost summary

insert
remove

max
remove

find
max

change
key

join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lg N lg N lg N 1 lg N N

binomial queue lg N lg N lg N lg N lg N lg N

best in theory 1 lg N lg N 1 1 1

Worst-case asymptotic costs for a PQ with N items

Can we implement both operations efficiently?

9

Heap: Array representation of a heap-ordered complete binary tree

Binary tree

• null or

• node with links
 to left and right trees

Heap-ordered binary tree

• keys in nodes

• no smaller than
 children’s keys

Array representation

• take nodes in level order

• no explicit links

X

T O

G S M N

A E R A I

1

2 3

4 5 6 7

8 9 10 11 12

Heap

1 2 3 4 5 6 7 8 9 10 11 12

X T O G S M N A E R A I

complete tree:
balanced except
for bottom level

10

Largest key is at root

Can use array indices to move through tree

• parent of node at k is at k/2

• children of node at k are at 2k and 2k+1

Length of path in N-node heap is at most ~lg N

n levels when 2n ≤ N < 2n+1

n ≤ lg N < n+1

~lg N levels 2n-1 nodes

Heap properties

X

T O

G S M N

A E R A I

1

2 3

4 5 6 7

8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

X T O G S M N A E R A I

2n nodes

level
1
2
3
.
.
.

n-1
n

11

X

T O

G S M N

A E R A I P

Suppose that a node at the bottom is larger than its parent

Invariant: Heap condition violated only at that node

To eliminate the violation

• exchange with parent

• maintains invariant (why?)

• moves up the tree

• continue until node not larger than parent

Promotion (bubbling up) in a heap

1 2 3 4 5 6 7 8 9 10 11 12 13

X T O G S M N A E R A I P

X T P G S O N A E R A I M

swim(Item a[], int k)
 {
 while (k > 1 && less(a[k/2], a[k]))
 { exch(a[k], a[k/2]); k = k/2; }
 }

Peter principle:
node rises to level of incompetence

parent of node at k is at k/2

X

T O

G S P N

A E R A I M

X

T P

G S O N

A E R A I M

12

sink(Item a[], int k, int N)
 { int j;
 while (2*k <= N)
 { j = 2*k;
 if (j < N && less(a[j], a[j+1])) j++;
 if (!less(a[k], a[j])) break;
 exch(a[k], a[j]); k = j;
 }
 }

Suppose that a node at the top is smaller than a child

Invariant: Heap condition violated only at that node

To eliminate the violation

• exchange with larger child

• maintains invariant (why?)

• moves down the tree

• continue until node not smaller than children

Demotion (sifting down) in a heap

1 2 3 4 5 6 7 8 9 10 11 12 13

O T X G S P N A E R A I M

X T P G S O N A E R A I M

Power struggle: better subordinate promoted

O

T X

G S P N

A E R A I M

children of node at k
are at 2k and 2k+1

X

T O

G S P N

A E R A I M

X

T P

G S O N

A E R A I M

13

X

T O

G S M N

A E R A I P

same as elementary
array-based

Heap-based PQ implementation

insert

remove largest

insert
 add node at end, then promote
remove largest
 exchange root with node at end, then sift down

X T O G S M N A E R A I P

X T P G S O N A E R A I M

T S P G R O N A E M A I X

T

S P

G R O N

A E M A I X

static Item *pq;

static int N;

void PQinit(int maxN);

int PQempty();

PQinsert(Item v)

 { pq[N++] = v; swim(pq, N); }

Item PQdelmax()

 {

 exch(pq[1], pq[N]);

 sink(pq, 1, N-1);

 return pq[N--];

 }

X

T P

G S O N

A E R A I M

14

PQ implementations cost summary

insert
remove

max
remove

find
max

change
key

join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lg N lg N lg N 1 lg N N

binomial queue lg N lg N lg N lg N lg N lg N

best in theory 1 lg N lg N 1 1 1

Worst-case asymptotic costs for a PQ with N items

15

#define pq(A) a[L-1+A]

void heapsort(Item a[], int L, int R)

 { int k, N = r-l+1;

 for (k = 2; k <= N; k++)

 swim(&pq(0), k);

 while (N > 1)

 { exch(pq(1), pq(N));

 sink(&pq(0), 1, --N);

 }

 }

Digression: Heapsort

build
heap

First pass: build heap
 add item to heap at each iteration, then sift up
 (or can use faster bottom-up method; see book)

Second pass: sort
remove maximum at each iteration
exchange root with node at end, then sift down

remove
maximum;
sift down

E X A M P L E

E X A M P L E

X E A M P L E

X E A M P L E

X M A E P L E

X P A E M L E

X P L E M A E

X P L E M A E

P M L E E A X

M E L A E P X

L E E A M P X

E A E L M P X

E A E L M P X

A E E L M P X

A E E L M P X

in the heap

not in the heap

16

Q: Is there a sort that uses

• O(N log N) running time in the worst case and

• no extra memory ?

A: Yes. Heapsort.

Not mergesort?

• O(N) extra space

• (challenge for the bored: design an inplace merge)

Not quicksort?

• quadratic in worst case (but probabilistic guarantee is as good)

• O(log N) extra space (not an issue in practice)

Heapsort is OPTIMAL for both time and space, BUT

• inner loop longer than quicksort’s

• makes poor use of cache memory

Significance of Heapsort

17

Event-based simulation

Challenge: Animate N moving particles

• each has given velocity vector

• bounce off edges, one another on collision

Example applications: molecular dynamics, traffic, ...

Naive approach: t times per second

• update particle positions

• check for collisions, update velocities

• redraw all particles

Problems:

• N2t collision checks per second

• may miss collisions

18

PQ for event-based simulation

Approach: Use PQ of events with time as key

• put collision event on PQ for each particle
(calculate time of next collision as priority)

• put redraw events on PQ (t per second)

Main loop: Remove next event from PQ

• redraw: update positions and redraw

• collision: update velocity of affected particle(s)
and put new collision events on PQ

More PQ operations needed:

• may need to remove items from PQ

• may want to join PQs for different sets of events
(Ex: join locals to national for air traffic control)

More sophisticated PQ interface needed

19

Records with keys (priorities)
Full set of operations
• create
• test if empty
• destroy
• copy
• insert
• remove largest
• remove
• find largest
• change key
• join

New operations complicate the interface
• need to refer to items in PQ for remove, change key
• need to refer to PQs for destroy, copy, and join
• while still maintaining separation between client and implementation

Object-oriented programming (OOP)

Extending the Priority-Queue ADT

generic operations
for first-class ADTs

operations that
characterize PQs

other operations that
 many clients need

20

Records with keys (priorities)
Full set of operations
• create
• test if empty
• destroy
• copy
• insert
• remove largest
• remove
• find largest
• change key
• join

Handle implementation in C: use pointers to unspecified structures
• a PQ is a pointer to a pq struct
• a PQlink is a pointer to a PQnode struct
• no way for client to know pq and PQnode implementations

Extended Priority-Queue ADT

typedef struct pq* PQ;
typedef struct PQnode* PQlink;
 PQ PQinit();
 int PQempty(PQ);
 PQlink PQinsert(Item,PQ);
 Item PQdelmax(PQ);
 void PQchange(PQ,PQlink,Item);
 void PQdelete(PQ,PQlink);
 PQ PQjoin(PQ,PQ);

PQfull.h

First-class PQ interface in C

generic operations
for first-class ADTs

operations that
characterize PQs

other operations that
 many clients need

pointers to structures
to be specified in
implementation

(Read Sections 4.8 and 4.9)

Note: solution easier in OOP languages like Java and C++ because primitives are built in

21

PQ PQjoin(PQ a, PQ b)

PQ challenge: join two heaps

X

T O

G S M N

A E R A I

1 2 3 4 5 6 7 8 9 10 11 12

X T O G S M N A E R A I

1 2 3 4 5 6

Z Y B W V A

Z

Y B

W V A

Z

W Y

V S O X

T E R A I M N B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Z W Y V S O X T E R A I M N B A G A

Would it help to use linked structures?
Hard to beat trivial algorithm (rebuild the whole heap)

first arg second arg

result

A G A

22

First-class PQ implementations cost summary

insert
remove

max
remove

find
max

change
key

join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lg N lg N lg N 1 lg N N

binomial queue lg N lg N lg N lg N lg N lg N

best in theory 1 lg N lg N 1 1 1

New operations introduce new algorithmic challenges

Can we implement all the operations efficiently?

23

EW

P

L E

T

R

N S

A O G I

T W E

R S I P E

N O G L

A

T

R

N S

A O G I

Binomial queue with N nodes: forest of left-heap-ordered power-
of-2 trees, one for each term in the binary decomposition of N

power-of-two tree (pott): binary tree with

• empty right subtree

• complete left subtree

left-heap-ordered pott (lhopott)

• key in each node

• no smaller than
all keys in left subtree

binary decomposition:

• sum of distinct powers of 2

• direct from binary representation
Ex: 13 = 11012 = 8 + 4 + 1

lhopott is binary-tree representation
of heap-ordered general tree

Binomial Queue

complete

8-tree 4-tree 1-tree

empty

S is OK in R’s
right subtree

no 2-tree

N = 13

heap-ordered trees
24

Largest key is at one of the roots

Can use links to move down tree

• two links per node

 ~lg N trees in N-node BQ

• ~lg N links to represent BQ

Length of path in N-node BQ is at most ~lg N

path length in 2n-tree is (n+1)

Binomial queue properties

EW

P

L E

T

R

N S

A O G I

2n nodes
2n-1 nodes

2n-2 nodes

. . .

2 nodes
1 node

height
n+1

n trees

struct PQnode
 { Item key; PQlink l, r; };
struct pq { PQlink *bq; };

25

X

W

P M

L E A E

X

W M E

P E A

L

T

S N I

R A G

O

A constant-time operation

• take larger of two roots as root

• combine other root, two subtrees
to make complete lho left subtree

• result is lho if arguments are lho

Joining two equal-sized lhopotts

T

S N I

R A G

O

X

W M E

P E A

L

T

S

R N

O A G I

PQlink pair(PQlink p, PQlink q)
 { PQlink t;
 if (less(p->key, q->key))
 { p->r = q->l; q->l = p; return q; }
 else
 { q->r = p->l; p->l = q; return p; }
 }

1

3

3

1

1

4

6

4

1

nodes
per level

binomial
coefficients!

X

T

S W

R N P M

O A G I L E A E

26

N

M
A

W

P

L E

Mimic addition of corresponding binary numbers

• adding 1 bits corresponds to joining equal-sized lhopotts

• 1+1 = 10 or 1+1 + 11 corresponds to carry

• result is a BQ whose size is sum of operand sizes

Joining two binomial queues

W

T

N P

E I L E

T

N

E I

T
I

N
E

M
A

E

1 1

+ 1 1 1

1 0 1 0

1 1

3

+ 7

 10

carries

first operand

second operand

result

27

Joining two binomial queues (code)

case c b a a c

0 0 0 0 a 0

1 0 0 1 a 0

2 0 1 0 b 0

3 0 1 1 0 a+b

4 1 0 0 c 0

5 1 0 1 0 a+c

6 1 1 0 0 b+c

7 1 1 1 a b+c

result

carry

#define test(C, B, A) 4*(C) + 2*(B) + 1*(A)
void PQjoin(PQlink *a, PQlink *b)
 { int i; PQlink c = z;
 for (i = 0; i < maxBQsize; i++)
 switch(test(c != z, b[i] != z, a[i] != z))
 {
 case 2: a[i] = b[i]; break;
 case 3: c = pair(a[i], b[i]);
 a[i] = z; break;
 case 4: a[i] = c; c = z; break;
 case 5: c = pair(c, a[i]);
 a[i] = z; break;
 case 6:
 case 7: c = pair(c, b[i]); break;
 }
 }

Not much more difficult than binary addition!

28

Join provides basis for all the implementations

insert:

• join singleton BQ

remove maximum:

• scan roots to find max, remove its tree

• join children of max with rest of BQ

change priority:

• demote, promote as with heaps

remove:

• replace removed node with max in its tree

• join children of max with rest of BQ

BQ-based PQ implementation

29

insert
remove

max
remove

find
max

change
key

join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lg N lg N lg N 1 lg N N

binomial queue lg N lg N lg N lg N lg N lg N

best in theory 1 lg N lg N 1 1 1

PQ implementations cost summary

Worst-case asymptotic costs for a PQ with N items

30

Priority Queues: Summary

Algorithm-design success story

PQ ADT

• identifies a useful computational abstraction

Heap

• provides efficient implementations of basic operations

Binomial queue

• provides efficient implementations of all operations

Ingenenious fundamental data structures

Surprising fact: there is still room for improvement!

31

insert
remove

max
remove

find
max

change
key

join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lg N lg N lg N 1 lg N N

binomial queue lg N lg N lg N lg N lg N lg N

best in theory 1 lg N lg N 1 1 1

PQ implementations cost summary

Worst-case asymptotic costs for a PQ with N items

Algorithms have been invented that meet these bounds,
BUT it is difficult to beat BQs in practice

