Maximum Flow and Minimum Cut

Max FIOW, M|n CUT Max flow and min cut.

. Two very rich algorithmic problems.

. Cornerstone problems in combinatorial optimization.
. Beautiful mathematical duality.

Contents. Nontrivial applications / reductions.
. Max flow. - Network connectivity. . Network reliability.
. Min cut. - Bipartite matching. . Security of statistical data.
. Ford-Fulkerson augmenting path algorithm. - Data mining. . Distributed computing.
. Shortest augmenting path. - Open-pit mining. . Egalitarian stable matching.
. Fattest augmenting path. . Airline scheduling. . Distributed computing.
Bipartite matching. - Image processing. . Many many more . . .

. Project selection.
. Baseball elimination.

Princeton University + COS226 - Algorithms and Data Structures -+ Spring 2003+ http://www.Princeton EDU/~cs226

Soviet Rail Network, 1955 Minimum Cut Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges.
. Source node s, sink node t.

Min cut problem. Delete edges to disconnect s from t.

source mmp 54’% 8% 10 @ sink

;'11-|.-|-..

(1 — ELELE Lo 5 e T COPOCHY - 15

: ! 5 -~
i 4
Source: On the history of the transportation and maximum flow problems. Alexander "é \é/
Schrijver in Math Programming, 91: 3, 2002. 30

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Minimum s-t cut problem. Find an s-t cut of minimum capacity.

9 ®

15 15 10

0 @ pacity

o
4

5 —»@) 8 ® 10 ®
4

%

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Minimum s-t cut problem. Find an s-t cut of minimum capacity.

10

10 ®

10

Capacity = 62

Cuts

A cut is a node partition (S, T) such that sisin Sand tisin T.
. capacity(S, T) = sum of weights of edges leaving S.

Minimum s-t cut problem. Find an s-t cut of minimum capacity.

/® 9 ®

10 4 15 15 10
5 8 ——»(© 10 /g}
4 6 15 10

S 15
Capacity = 28
\‘g 30 > EaSl)

Maximum Flow Problem

Network: abstraction for material FLOWING through the edges.
. Directed graph.
. Capacities on edges. =
. Source node s, sink node t.

exactly as for min cut problem

Max flow problem. Assign flow to edges so that:
. Equalizes inflow and outflow at every intermediate vertex.

. Maximizes flow sent from s to t.
not sort

9—>

\C%% -
5

?f

10

source mmp 5

%r

capacity = 15

%‘

Flows Flows

A flow f is an assignment of weights to edges so that: A flow f is an assignment of weights o edges so that:
. Capacity: 0< f(e) <u(e). . Capacity: 0< f(e) <u(e).
. Flow conservation: flow leaving v = flow entering v. . Flow conservation: flow leaving v = flow entering v.

0 6
2 9 »(5 2 9 »(5
4 0 0 10 0 6
10 44 15 150 10 10 44 15 150 10
0 i \L ! 3 8 \L ;
5 3 8 »(6 10 5 3 8 »(6 10
40 ¢ I 0 9 40 ; I 0 e
) 6 10 . 6 10
Capacity ——> 15 Capacity ——> 15
o ad o et Value = 24
Flow 4 30 »(7 Flow 4 30 »(7
0 5 1 10
Flows Flows and Cuts
Max flow problem: find flow that maximizes net flow into sink. Observation 1. Let f be a flow, and let (S, T) be any cut. Then, the net
flow sent across the cut is equal to the amount reaching t.
9 6
2 9 > 9 ®
10 1 9 10 0 6
10 40 15 150 10 10 44 15 150 10
) 8 \L 9 4 8 8
5 3 8 > 10 5 —>Q® 8 ® 10 ®
40 p Io 0 10 40 < 50 o
) 6 10 6 10
C + > 15 15
apactly -/» 14\‘}> Value = 28 0
Flow > _
4 30 7 Value = 24 30 @

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any cut. Then, the net
flow sent across the cut is equal to the amount reaching t.

6

9 —»(®

0 6

15 15 0 10

8 8

8§ —» 10 ®
0 10

Flows and Cuts

Observation 1. Let f be a flow, and let (S, T) be any cut. Then, the net
flow sent across the cut is equal to the amount reaching t.

34 15 50 10
8
—0 10 /@
10
150 10

Flows and Cuts

Observation 2. Let f be a flow, and let (S, T) be any cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity =30 O Flow value < 30

9 ®

15 15 10

30 @

Max Flow and Min Cut

Observation 3. Let f be a flow, and let (S, T) be a cut whose capacity
equals the value of f. Then f is a max flow and (S, T) is a min cut.

Cut capacity =28 O Flow value < 28

Flow value = 28

Max-Flow Min-Cut Theorem

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): In any
network, the value of max flow is equal to the capacity of min cut.

. Proof IOU: we find flow and cut such that Observation 3 applies.

Min cut capacity = 28 < Max flow value = 28

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.

Flow value = O

3o

flow

'4 capacity
'4

PLu

»H O

85890 O

ik
o o
é\
O p»O

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.

o
o E0

flow Flow value = 10

'4 capacity
'4

10
13 >3 10

O p»O

Towards an Algorithm

Find s-t path where each arc has f(e) < u(e) and "augment" flow along it.
. Greedy algorithm: repeat until you get stuck.
. Fails: need to be able to "backtrack".

Flow value = 10

flow

Residual 6raph

Original graph.

flow = f(e)
@

6
. Flow f(e). : 17 :
N

. Edgee=v-w

capacity = u(e)

Residual arc.
- Edge e = v-w or w-v. residual capacity = u(e) - f(e)
. "Undo" flow sent. 2
(: — 11 j :)
Residual graph.
* 6
. All the edges that have N

strictly positive residual capacity.

residual capacity = f(e)

21

Augmenting Paths

Augmenting path = path in residual graph.
. If augmenting path, then not yet a max flow.
. If no augmenting path, is it a max flow???

original 4

/@'\4
4
@ﬁ !
10%6
7

residual

Augmenting Paths

Augmenting path = path in residual graph.
. Increase flow along forward edges.
. Decrease flow along backward edges.

residual 4
(g 10 De—— 10 >D
_—/

3

original

»H
R
A%
AR AR
)
»

Ford-Fulkerson Augmenting Path Algorithm

Ford-Fulkerson algorithm.
. Generic method for solving max flow problem.

Ford-Fulkerson Augmenting Path Algorithm

Start with f(e) = 0 everywhere.

REPEAT (until no augnenting paths are left)
Increase the flow al ong any augnenting path.

Questions.
. Does this lead to a maximum flow?
. How do we find an augmenting path? s-t path in residual graph

. How many augmenting paths does it take?

Max-Flow Min-Cut Theorem

Augmenting path theorem. A flow f is a max flow if and only if there
are no augmenting paths.

Max-flow min-cut theorem. The value of the max flow is equal to the
capacity of the min cut.

We prove both simultaneously by showing the following are equivalent:
(i) fisamax flow.
(ii) There is no augmenting path relative to f.
(iii) There exists a cut whose capacity equals the value of f.

@) O (i) equivalent to not (ii) O not (i)
. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

(i) O (iii)) Next slide.
(iii) O (i) This was Observation 3.

Proof of Max-Flow Min-Cut Theorem

(i) O (iii). If there is no augmenting path relative to f, then there
exists a cut whose capacity equals the value of f.

Proof.
. Let f be a flow with no augmenting paths.
. Let S be set of vertices reachable from s in residual graph.
- S contains s ; since no augmenting paths, S does not contain t
- all edges e leaving S in original network have f(e) = u(e)
- all edges e entering S in original network have f(e) = 0

Fl = 3 Fle)- 3 Fle)
eoutof S einto S
= 3 ule)
eoutof S

capacity(S, T)

Residual Network

Ford-Fulkerson Algorithm: Implementation

Two representations of each edge in residual graph.
. May need to traverse edge in forward or reverse direction.
. Let e be edge in original network with flow f(e) and capacity u(e).
. Inresidual graph, include reverse edge and maintain anti-symmetry:
- forward edge: flow = f(e), residual capacity = u(e) - f(e)
- reverse edge: flow = -f(e), residual capacity = -u(e)

A [B]2 2]e}—»[c] 31 [s]

1 D: C|-10 Fl 22

F: D|-2-2 E[-1-1

Ford-Fulkerson Algorithm: Implementation

Two representations of each edge.
. Need to update BOTH representations.
. Maintain link connecting forward and backward representations.

Edge in Adjacency List

typedef struct node *Iink;
struct node {
int w /] target vertex win v-w
int cap; /'l capacity u(e)
int flow Il flow f(e)
I'i nk dup; /'l reversal of edge
l'i nk next; /1 next edge in adjacency list
@ I
? 5 [Al22[s[s—l32 [+~

é v E[E2¥ e[A [
v

Ford-Fulkerson Algorithm: Implementation

Compute Max Flow

int residual Capacity(link e) {
if (e->cap < 0) return —e->flow; 4= reverse edge
else return e->cap — e->flow;

} N forward edge
void GRAPHmaxflow(Graph G, ints, intt) {
int v, bottle;
link e; find augmenting path
L4

while (augpath(G, s, t) == TRUE) { st =0zl e 37

bottle = INFINITY; 4
for (v=t; v!=s; v =e->dup->v) {

e = G->path[v];

bottle = min(bottle, residualCapacity(e));

}

for (v=t; v!=s;v=e->dup->v) {

e = G->path[v];

e->flow += bottle;

e->dup->flow -= bottle; ¥y update flow on forward
} and reverse edges

Ford-Fulkerson Algorithm: Analysis

Assumption: all capacities are integers between 1 and U.

Invariant: every flow value and every residual capacities remain an
integer throughout the algorithm.

Theorem: the algorithm terminates in at most | f * | < VU iterations.

b S

. t pol ial
Corollary: if U =1, then algorithm runs in O(V) iterations. ?:in’;?j,?";?gla

Integrality theorem: if all arc capacities are integers, then there
exists a max flow f for which every flow value is an integer.

30

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1
R 0
100 100
1
1R
0 1K
100 100

Original Network

32

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

1 R 1
100 100,
0
1X
B 1 1
100 100

Original Network

34

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.
. Clever choices lead to polynomial algorithms.
. Optimal choices for real world problems ???

Desigh goal is to choose augmenting paths so that:
. Can find augmenting paths efficiently.
. Few iterations.

Edmonds-Karp (1972)
(shortest path)
(fattest path)

Choose augmenting path with:
. Fewest number of arcs.
. Max bottleneck capacity.

36

Shortest Augmenting Path

Shortest augmenting path.
. Easy to implement with BFS.
. Finds augmenting path with fewest number of arcs.

=1

whi | e (! QUEUEI senpty()) {

v = QUEUEget ();
for (e = G>adj[v]; e != NULL; e = e->next) {
if (residual Capacity(e) > 0) { @m ignore unless it's
w = e->w, a residual arc

if (G>dist[w > G>dist[v] + 1) {

G>dist[w] = G>dist[v] + 1;
G >path[w] = e; -~
QUEUEpuUt (W) ; keep track of path
}
}
}
} 2 "eturn 1if there's an augmenting path

return (dist[t] < INFINITY);

37

Shortest Augmenting Path Analysis

Length of shortest augmenting path increases monotonically.
. Strictly increases after at most E augmentations.
. At most E V total augmenting paths.
. O(E2V) running time. 'E

T

s,

bl

o u-L‘ 5

38

Fattest Augmenting Path

Fattest augmenting path.
. Finds augmenting path whose bottleneck capacity is maximum.

. Delivers most amount of flow to sink.

. Solve using Dijkstra-style (PFS) algorithm.
10

12 X
O—1—®

residual capacity

if (wt[w] < mn(w[v], cap[e])
w[w = nmin(w[v], cap[e])

Relax an edge e = v-w

Analysis.
. O(E log V) per augmentation with binary heap.
. O(E + V log V) per augmentation with Fibonacci heap.
. Fact: O(E log U) augmentations if capacities are between 1 and U.

39

Choosing an Augmenting Path

Choosing an augmenting path.
. Any path will do O wide latitude in implementing Ford-Fulkerson.
. Generic priority first search.
. Some choices lead to good worst-case performance.
- shortest augmenting path
- fattest augmenting path
- variation on a theme: PFS
. Average case not well understood.

Research challenges.

. Practice: solve max flow problems on real networks in linear time.
. Theory: prove it for worst-case networks.

40

History of Worst-Case Running Times

Year Discoverer Method Big-Oh

1951 Dantzig Simplex EV2ut

1955 Ford, Fulkerson Augmenting path EVUT

1970 Edmonds-Karp Shortest path E2V

1970 Edmonds-Karp Max capacity E logU (E+ Vlog V) T
1970 Dinitz Improved shortest path E V2

1972 | Edmonds-Karp, Dinitz Capacity scaling E?logU t

1973 Dinitz-Gabow Improved capacity scaling EVlogU T
1974 Karzanov Preflow-push V3

1983 Sleator-Tarjan Dynamic trees E Vleg V

1986 Goldberg-Tarjan FIFO preflow-push EV log (V2/ E)

E%/2|og (V2/E)log U t

1997 Goldberg-Rao EV3lag (V2/ E) log U T

Length function

T Arc capacities are between 1 and U.

111

a1

An Application

Ernigrnﬁggfrnniggggnggﬁ

Jon placement.

. Companies make job offers. ey
. Students have job choices. _ e
" Mioe

Can we fill every job? ~ll
Can we employ every student? ;E

|
N

Alice-Adobe
Bob-Yahoo
Carol-HP
Dave-Apple
Eliza-IBM
Frank-Sun

||’|I|||
i

|i|

)
'||||||f|!:' "|H|
|b M I |}

42

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6.
. A set of edges M is a matching if each vertex appears at most once.
. Max matching: find a max cardinality matching.

Matching
1-B, 3-A, 4-E

43

Bipartite Matching

Bipartite matching.
. Input: undirected, bipartite graph 6.
. A set of edges M is a matching if each vertex appears at most once.
. Max matching: find a max cardinality matching.

Matching
1-A, 2-B, 3-C, 4-D

QQV@(Q
@ ® &

©

</

5

©)
@

a4

Bipartite Matching

Reduces to max flow.
. Create directed graph G'.
. Direct all arcs from L to R, and give infinite (or unit) capacity.
. Add source s, and unit capacity arcs from s to each node in L.
. Add sink t, and unit capacity arcs from each node in R to t.

L R
1 A D ®
@
3 © ®
ol ® ®
5 E ®
G G'

45

Bipartite Matching: Proof of Correctness

Claim. Matching in G of cardinality k induces flow in G' of value k.
. Givenmatching 1-2" 3-1" 4-5' of cardinality 3.
. Consider flow that sends 1 unit along each of 3 paths:
s-1-2'-t s-3-1'-t s-4-5-t.
. fisaflow, and has cardinality 3.

46

Bipartite Matching: Proof of Correctness

Claim. Flow f of value k in 6" induces matching of cardinality k in 6.
. By integrality theorem, there exists 0/1 valued flow f of value k.
. Consider M = set of edges from L to R with f(e) = 1.

- each node in L and R participates in at most one edge in M
- IM] = ki consider cut (LO s, RO 1)

& o

L

D
@
®
O,

®

47

Reduction

Reduction.
. Given an instance of bipartite matching.
. Transform it to a max flow problem.
. Solve max flow problem.
. Transform max flow solution to bipartite matching solution.

Issues.
. How expensive is transformation?
. Is it better to solve problem directly? O(E V¥/2) bipartite matching

Bottom line: max flow is an extremely rich problem-solving model.

. Many important practical problems reduce to max flow.
. We know good algorithms for solving max flow problems.

a8

