
CS 493: Algorithms for Massive Data Sets Huffman and Arithmetic Coding
DATE : Thursday, 2/7/2002 Scribe: Chi Zhang

1 Review of last class

For message set S, s ∈ S has probability of p(s). Entropy of S is given as

H(S) =
∑

s∈S

p(s) log2

1

p(s)

And log2
1

p(s)
is the self information of s.

For any uniquely decodable code C for S, la(C) ≥ H(S).

Theorem 1.1 Given S, ∃ code C for S, such that la(C) ≤ H(S) + 1.

Proof. Define l(s) = dlog2
1

p(s)
e.

∑

s∈S

2−l(s) =
∑

s∈S

2−dlog2
1

p(s)
e ≤

∑

s∈S

p(s) = 1

From Kraft-McMillan inequality, ∃ prefix code C ′,

la(C
′) =

∑

s∈S

p(s)l(s) =
∑

s∈S

p(s)

⌈

log2

1

p(s)

⌉

≤
∑

s∈S

p(s)

(

log2

1

p(s)
+ 1

)

= H(S) + 1

2 Huffman Code

Given a set of messages with probabilities p1 ≤ p2 ≤ ... ≤ pn, the Huffman code tree is
constructed by recursively combining subtrees:

1. Begin with n trees, each consists of a single node corresponding to one message word,
with the weight of pi

2. Repeat until there is only one tree

• pick two subtrees with smallest weights

• combine them by adding a new node as root, and make the two trees its children.
The weight of the new tree is the sum of the weight of two subtrees

With a heap, each step of combining tree takes O(log n) time, and the total time is
O(n log n).

1

Lemma 2.1 Suppose C is the optimal code for S, p1, p2 and l1, l2 are the probabilities and

code lengths of messages s1 and s2, respectively. Then p1 > p2 ⇒ l1 ≤ l2.

Proof. Suppose p1 > p2 and l1 > l2, we swap the code words for s1 and s2, and get a new code
C ′. The length of C ′ is la(C

′) = la(C)+p1(l2−l1)+p2(l1−l2) = la(C)+(p1−p2)(l2−l1) < la(C).
This contradicts the optimality of code C.

Lemma 2.2 Without loss of generality, the two messages of smallest probability occur as

siblings in the code tree for an optimal code.

Proof. Given the code tree for an optimal code, we will show that it can always be modified
without increasing the average code length so that the two smallest probability nodes are
siblings. From Lemma 2.1, the smallest probability node must occur at the largest depth
in the code tree. Note that the sibling of this node is also at the same depth. Now the
sibling can be swapped with the second smallest probability node to obtain a code tree of
the desired structure. This transformation does not increase the average code length.

Theorem 2.3 The Huffman code is an optimal prefix code.

Proof. The proof proceeds by induction on n, the number of messages.
Suppose the Huffman code is optimal for all sets of n proababilities {p1 ≤ p2 ≤ ... ≤ pn}.

Look at the case of {p1 ≤ p2 ≤ ... ≤ pn ≤ pn+1}. We build a Huffman tree for this case by first
combining p1 and p2. Then we look at the new nodes of {p1 +p2, p3, ..., pn+1}. We know that
there is an optimal Huffman tree T ′ for it. Suppose the depth of the node for p1+p2 in T ′ is d.
So the code length of T is given as la(T) = la(T

′)+(d+1)(p1+p2)−d(p1+p2) = la(T
′)+p1+p2.

From Lemma 2.2, there exists an optimal code tree with p1 and p2 as siblings. By the
inductiev hypothesis, T ′ is optimal for the set of n probabilities obtained by combining p1

and p2. So the optimal tree must have code length at least la(T
′) + p1 + p2. Thus T is the

optimal code tree.

Question: Where did we use the fact that we compared ourselves to the optimal prefix
code ?

2.1 Prefix codes for larger alphabets

How do we build an optimal prefix code for the ternary alphabet {0, 1, 2} ?
Suppose we have the following set of probabilities: {0.1, 0.2, 0.2, 0.5}. The first attempt

to generalize the Huffman algorithm would be to simply combine the smallest three proba-
bilities at each stage. This generates the following tree: ((0.1) (0.2) (0.2)) (0.5)). This not
optimal, because there is one empty slot wasted at the highest level.

Solution: We introduce dummy nodes of probability 0 to fill any empty slots. For a full
ternary tree without any empty slot, the number of leaves should be 3 + 2k for some integer
k. (This comes from the process of “growing” a ternary tree. We start from a 1 level ternary

2

tree with 3 leaves. And each time we add 3 nodes to be subtree of one leaf, increasing the
number of leaves by 2).

With this modification, we obtain the optimal tree which is (((0) (0.1) (0.2)) (0.2) (0.5)
).

3 Problems with Huffman Coding

The Huffman code has the property that H(S) ≤ la(C) ≤ H(S) + 1. So up to one bit per
character can be wasted.

Conside the case then H(S) << 1. e.g. alphabet {0, 1}. p(0) = 0.9999, p(1)=0.0001.H(S) =
0.00147... If a Huffman code is used, each message takes at least one bit, which is much
higher than H(S).

One possible solution is to combine k consecutive messages into one message word. Then
the entropy becomes kH(S), while the average length of the Huffman code would be kH(S)+
1, i.e. a worst case wastage of 1/k bits per message. However, if the original number of
messages was m, this produces mk messages (and hence mk codewords).

How does this compare with the discussion of the entropy of English in the last class
? There too, we combined multiple characters to get an estimate of the entropy. However,
there the combination of characters was done to exploit the dependence between consecutive
characters and reduce the entropy estimate.

Consider another example:
Symbol prob.

a 0.2
b 0.4
c 0.2
d 0.1
e 0.1

Here are two possible Huffman trees:

1. (((d, e), b), (a, c))

2. ((((d, e), a), c), b)

Which one is better? In certain applications, we would like to minimize the variance of
code word length, defined as:

∑

c∈C

{p(c)(l(c) − la(C))2}

This is achieved by an extension to the Huffman algorithm. When combining trees, break
ties by picking the earliest produced subtrees with same smallest probability.

Question: Is this equivalent to breaking ties by picking “shortest” subtrees (for some
appropriate definition of shortest) ?

3

4 Arithmetic Coding

One way to avoid the wastage in Huffman coding is to use arithmetic coding. Here the idea
is to associate message sequences with intervals between 0 and 1.

Example: for alphabet {m1, m2, m3}, with p(mi) = 1
3
.

0[m1 | m2 | m3]1
⇓

⇐= =⇒
1
3
[m1 | m2 | m3]2

3

⇓
⇐ =⇒

1
3
[m1 | m2 | m3]4

9

. . .
The above graph shows the encoding of message sequence {m2, m1, ...}. We begin from

the whole interval of [0, 1]. With the first message m1, we split the interval proportionally
according to the probabilities of the messages. Then we use the sub-interval corresponding
to m1 as the current interval. With each consecutive messages, we repeat the above process
to get smaller and smaller intervals. The final interval is the encoding for the whole message
sequence.

Formally, for messages {m1, m2, . . . , mk} with probabilities {p1, p2, . . . , pk},
∑

pi = 1, we
divide the interval [0, 1] into k intervals. The ith interval corresponding to pi spans from
∑

j<i pj to
∑

j≤i pj. Denote
∑

j<i pj as di.
The code for a sequence of x messages mk1 , mk2 , ..., mkx

is calculated by constructing a
sequence of intervals [li, li + si], where
l0 = 0, s0 = 1;
l1 = dk1, s1 = pk1 ;
. . .
li+1 = li + si ∗ dki+1

, si+1 = si ∗ pki+1

The final encoding for sequence {mk1 , mk2, ..., mkx
} is interval [lx, lx + sx].

Now, if we construct the intervals corresponding to all message sequences of length l, they
form a disjoint partition of [0, 1]. A given interval uniquely determines a message sequence
of length l. The size of the interval for message sequence m1, m2, ..., ml is

∏

p(mi). We will
show how we can represent an interval [l, l + s] using ∼ log2

1
s

bits. Note that the sum of the
self informations for the sequence m1, m2, ..., ml is

∑

log2
1

p(mi)
= log2

1
∏

p(mi)
Next, we show

how we can obtain a prefix free code for representing intervals.
The idea is to represent the interval by a number inside the interval which has few bits

in its binary representation. However, such a number has to be chosen carefully in order to
ensure that the code is prefix free. In order to ensure the prefix free property, for any b bit
binary number x, we associate the interval consisting of all numbers which agree with x in
the first b bits. (The interval associated with x is exactly [x, x + 1

2b]. Now, for an interval

4

[l, l + s] we will represent it by a number x ∈ [l, l + s] such that the interval associated with
x is completely contained in [l, l + s]. This ensures that the code is prefix free.

Theorem 4.1 The interval [l, l + s] can be represented by at most dlog2
1
s
e + 1 bits.

Proof. In order to represent [l, l + s], we consider the mid point l + s/2, take its binary
fractional representation and truncate it to dlog2

1
s
e + 1 bits. We claim that the interval

associated with this number is completely contained in [l, l+s]. First, note that the resulting
value is still in the original interval, since truncating can reduce the number by at most
2−(dlog2

1
s
e+1) ≤ s/2. Also, the interval associated with the truncated number has length at

most s/2, hence it lies completely in [l, l + s].

The above theorem gives a way to represent intervals as binary codes. The interval
corresponding to any two message sequences of length n do not overlap. So for an interval
[l, l + s], we can use the truncated binary fractional representation as the code word.

Theorem 4.2 For a sequence of n messages with self informations s1, s2, . . . , sn, the length

of the encoding produced by arithmetic coding is at most 2 +
∑n

i=1 si.

Proof. Let pi be the probability of message mi. Then the length of the arthmetic code is
at most dlog2

1
s
e + 1 where s =

∏n
i=1 pi. Now, dlog2

1
s
e + 1 = d

∑

log2
1
pi
e + 1 ≤

∑

log2
1
pi

+ 2.

Note that log2
1
pi

is the self information of message mi.

5 Drawbacks of Arithmetic Coding

1. Long sequences of messages need arithmetic with arbitrarily high precision.

2. In the worst case, we may have to see the whole message sequence to produce the first
bit of the code. This could happen for example when the interval corresponding to the
message sequence straddles 1/2.

One way to alleviate both of these problems is to use arithmetic coding of blocks of k
messages for a suitably chosen value of k. Also, there are integer based variants of arithmetic
coding which do not produce the optimal code, but are easier to implement since they do
not require arbitrary precision arithmetic.

5

