CS 493: Algorithms for Massive Data Sets Approximate Nearest Neighbor
Searching
04/09/2002 Scribe: Ding Liu

1 Review

1.1 Locality Sensitive Hash Functions

Given a collection C of objects and a similarity function sim(z,y), a locality sensitive hash
function family F operates on C, such that for any =,y € C,

Probaer[h(z) = h(y)] = sim(z, y)

In the last lecture we showed that if sim(z, y) admits a locality sensitive hash function family,
then the distance function 1 — sim(z,y) satisfies the triangle inequality.

1.2 The Approximate Nearest Neighbor Searching Problem

In the last lecture we also considered the approximate nearest neighbor searching problem in
Hamming space. The problem is as follows. Given a collection P of n points in the Hamming
cube H?¢ (that is, each point is a 0-1 vector in dimension d). We want to preprocess P such
that given any query point ¢, we can quickly find an (1 + €)-approximate nearest neighbor
of ¢ in P. We call p* an (1 + €)-approximate nearest neighbor of ¢ if for any p € P,
H(p*,q) < (14 €)H(p,q). Here H(x,y) is the Hamming distance between z and y.

2 Finding Approximate Nearest Neighbor via Locality
Sensitive Hash Functions

In this section we will solve the (1 + ¢)-approximate nearest neighbor problem using locality
sensitive hash functions. In the last lecture we introduced the (ry,rs)-neighbor problem.
There we gave an overview of the data structure of the (r,rs)-neighbor problem without
analyzing it. In this lecture we will finish its analysis. But before that, we’d like to show
how to use it in the approximate nearest neighbor problem.

Recall that we can regard the (71, r2)-neighbor problem as a black box that distinguishes
between the following two cases:

e If there exists a point p whose distance from the query is at most ry, then it returns a
point p’ whose distance from the query is at most 7.

e If all points are at distance more than r, from the query, then it answers “no”.

To solve the (1 + €)-approximate nearest neighbor problem, we build several data struc-
tures for the (ry,ry)-neighbor problem with different values of (ry,r3). More specifically,
we could explore (r1,79) equal t0 (Tmin, Tmin(1 + €)5 (Pmin(1 + €); Tmin(1 + €)%, - - -, Tmae(1 +
€)Y, Trmazs Where 7, and 7., are the smallest and the largest possible distance between
the query and the data point, respectively. We run our algorithm (to be described) on the
above values of (r1,73), and stop when the algorithm says “yes” for the first time. The point
p' returned by the algorithm is outputted as the (1 + €)-approximate nearest neighbor. If
each call of the (r,r3)-neighbor problem is answered correctly, then p’ is indeed a (1 + €)-
approximate nearest neighbor of the query. To see this, look at the first call (r1,72) when
“yes” is returned. We know that all points are at distance more than r; from the query since
the last call answered “no” (the last call was made on (r1/(1 + €),71)). Also the point p'
returned by the current call is at distance at most 7, = (1 + €)r; from the query, this means
that p’ is a (14 €)-approximate nearest neighbor of the query. One little issue left. Since the
algorithm for the (r{,r3)-neighbor problem is randomized, there is some error probability.
We deal with this issue by making the error probability small enough. We then bound the
error probability of the (1 + €)-approximate nearest neighbor algorithm by the union bound.

Now we are at the point to analyze the algorithm for the (rq, r2)-neighbor problem. We
adopt notations from the last lecture. Recall that we formed [groups, with each group
defined by k£ locality sensitive hash functions. We let g; = (hj1, -, hjx) be the k hash
functions for the j-th group. Recall that we compute g1(q),...,g(q) and test those p such
that p agrees with ¢ in at least one group. We interrupt the search after finding 2/ points,
including duplicates. From the last lecture we know that the algorithm is correct if the
following two properties hold:

1. If there exists p such that H(p,q) < r; then g;(p) = g;(q) for some j =1,...,1L

2. The total number of p such that H(p, q¢) > r, and yet g;(p) = ¢;(¢) forsome j =1,...,1
is less than 2.

Recall that for any hash function A used in the above construction, Prob[h(p) = h(q)] =
sim(p,q) = 1— H(p,q)/d. Thus for a point p such that H(p, q) < rq, Prob[(p) = h(q)] > m
where p; = 1 —r1/d. On the other hand, H(p, q) > ro implies that Prob[h(p) = h(q)] < p2
where p, = 1 — ry/d. So for any g;, H(p,q) < r; implies that Prob[g;(p) = ¢;(q)] > p¥;
H(p,q) > ry implies that Prob[g;(p) = g;(¢)] < p5. Now we set k& = logn/log(1/ps) so
that p& = 1/n. Since there are at most n candidate p such that H(p,q) > o, the expected
number of p for which g;(p) = g;(¢) hold (for a fixed g;) is at most 1. Then the expected
number of p such that H(p,q) > ry yet agrees with ¢ in any g; is at most {. By Markov
inequality the probability that this number exceeds 21 is less than 1/2. This shows that the
second property listed above holds with probability at least 1/2.

How about the first property? When H(p, ¢) < rq, for any fixed g;, Problg;(p) = g;(¢)] >
pk = plosn/108(/p) — p—p where p = log (1/p1)/1og (1/ps). Thus the probability that p agrees
with ¢ in at least one group is at least 1 — (1 — n™?)!. Setting [= n” makes this probability

2P
<p

lower bounded by 1 — 1/e. This is the probability for property one to hold. By the union
bound we know that with probability at least 1/2 — 1/e, both these two properties hold.!

Now we try to bound the time and space of this algorithm. We first bound k£ and
l. k = logn/log(1/p2) = O(logn). To bound ! we need to bound p first. Recall that
p = log(1/p1)/log(1/ps) and py = 1 — 11/d, po = 1 — ry/d. We may let 7y = (1 + €)ry
since this is always the case each time we call this algorithm. It is not hard to show that
p = O(1/(1+¢)). We omit the proof here, which could be found in [2]. Thus I = O(n/(+9),
Thus the space of this algorithm is O(dn + nlk) = O(dn + n**/(+9)) and the query time
is O(lkd) = O(dn*/(t9).2 For example, if we set € = 1 then we can find a 2-approximate
nearest neighbor in time O(d\/n), using space O(n(d + /n)).

3 Another Algorithm for Approximate Nearest Neigh-
bor Searching

The algorithm in the last section requires separate data structures for different possible
values of r, the distance between the query and its nearest neighbor. In this section we give
another algorithm from [1] which automatically adjusts to the correct distance . The time
and space of this new algorithm is the same as the old one.

Given n 0-1 vectors in dimension d, we choose N = O(n'/(!¥9) random permutations of
the bits. For each random permutation o, we maintain a sorted order O, of the n vectors, in
lexicographic order of the bits permuted by o. Given a query ¢ we do the following: For each
o we perform a binary search on O, to locate the two vectors closest to g. We then search
in each O,, examining vectors above and below the position returned by the binary search
in order of the length of the longest prefix that matches ¢q. This is done by maintaining
two pointers for each sorted order O, (one moves up and the other down). At each step we
move one of the pointers up or down corresponding to the element with the longest matching
prefix. We examine 2N = O(n'/(1*9) vectors in this way. Of all the vectors examined, we
return the one that has the smallest Hamming distance to q.

The analysis of this algorithm is very similar to the one in the last section. Suppose
the nearest neighbor of ¢ is at a Hamming distance of r from ¢. Let py = 1 —r/d, p, =
1—r(1+¢€)/d, k =log, ,, n, p =log (1/p1)/1og (1/ps). Then n? = O(n!/{1*9). We can show
that with constant probability the following two conditions hold:

1. From amongst O(n'/(1+9)) permutations, there exists a permutation o such that the
nearest neighbor agrees with ¢ on the first £ coordinates in o.

!By repeating the above algorithm O(log (1/6)) times, we can amplify the probability of success in at least
one trial to 1 — 4, for any § > 0. For example, the (1 + €)-approximate nearest neighbor problem calls this
algorithm log ;. d times, we then let § < 1/log(,)d, so that the algorithm for the (1 + €)-approximate
nearest neighbor problem succeeds with constant probability. For this, we repeat the (ry,r2)-neighbor
algorithm O(loglog d) times.

20(f(n, d)) represents O(f(n,d))log®n for some constant c.

2. Over all N permutations, the number of vectors that are at Hamming distance of more
than r(1 + ¢€) from ¢ and agree on the first £ coordinates is less than 2N.

The correctness of this algorithm follows immediately from these two conditions.

A nice property of this data structure is that we do not need a reduction to many
instances of the (r{,r3)-neighbor problem. That is, we solve the nearest neighbor problem
simultaneously for all values of distance r using a single data structure.

References

[1] Charikar, M. Similarity estimation techniques from rounding algorithms, Proc. ACM
STOC (2002), To appear.

[2] Indyk, P., Motwani, R. Approzimate nearest neighbors: Towards removing the curse of
dimensionality, Proc. ACM STOC (1998), 604-613.

