CS 493: Algorithms for Massive Data Sets Estimating Similarity
04/04/2002 Scribe: Ding Liu

1 Locality Sensitive Hash Functions

In this lecture we will be talking about algorithms for estimating similarity. Fix a collection
C of objects. We define a similarity function sim(z,y) that maps pairs of objects x,y € C
to a number in [0,1]. sim(z,y) measures the similarity between = and y. sim(z,y) = 1
means that = and y are identical; sim(x,y) = 0 means that x and y are very different. For
example when C is a set of unit vectors in R, we can define sim(@,?) to be 1 — (4,)/
where (i, v) is the angle between 4 and v.

Given C and sim(z,y), a locality sensitive hash function family F operates on C, such
that for any =,y € C,

Probperlh(x) = h(y)] = sim(z,y)

Below are two examples of locality sensitive hash function family.

e C is a collection of sets. For two sets A, B € C, sim(A, B) = |AN B|/|AU B|. Broder
et al. [1] introduced the notion of min-wise independent permutations, which can be
used to construct locality sensitive hash functions for this similarity measure, known
as the Jaccard coefficient.

e C is a collection of unit vectors. For two vectors u, U, sim(u, V) = 1 — (i, ¥)/m where
(i, U) is the angle between @ and U. A locality sensitive hash function family is defined
as follows. Let S¢°! C R? denote the unit (d — 1)-sphere {# € R¢ : ||7|| = 1}. Let
be a vector drawn uniformly at random from S¢~!. Corresponding to this 7 we have
a hash function h such that hx(@) = 1if 7@ > 0, and hz(d) = 0 if ¥- @ < 0. The
following fact was used by Goemans and Williamson [3] as a rounding step in their
approximation algorithm for MAX-CUT:

Problh#(@) = ha()] = 1 — 0(d@, 7) /7

The second example above also provides a way of constructing locality sensitive hash
functions for sets, but for some similarity measure different from the first example above.
Given a set A whose elements are drawn from a base set U. We can represent A by a vector
v € {0,119 as follows: if the i-th element of U belongs to A then the i-th bit of v is 1,
otherwise it is 0. For this set of vectors, we apply the hashing scheme of the second example
above. Thus we obtain a hashing scheme for a collection of sets such that:

Prob[h(A) = h(B)] = 1 — 6/x

where
vx-vp |[ANDB]

[allsl \/]A[|B]

cosd =

2 Existence of Locality Sensitive Hash Functions

The material of this section is from [2]. The first result is a necessary condition for the
existence of locality sensitive hash function families for a given similarity measure.

Theorem 2.1 If similarity function sim(x,y) admits a locality sensitive hash function fam-
ily, then the distance function 1 — sim(x,y) satisfies the triangle inequality.

Proof. Suppose there exists a locality sensitive hash function family F such that
sim(z,y) = Probper[h(z) = h(y)]
Then

1 — sim(z,y) = Probuer[h(z) # h(y)]

h
Let Ap(z,y) be the indicator variable for the event h(z) # h(y). That is, Ay(z,y) = 1
if h(x) # h(y), and Ap(z,y) = 0 otherwise. We claim that A, (x,y) satisfies the triangle
inequality:

An(z,y) +An(y, 2) > Ap(w,2) (

—_

)

The reason is that the only possible way to violate inequality 1 is to let Ay (z,y) = Ap(y, z) =
0 and Ap(z,2) = 1. But in this case h(z) = h(y) = h(z), contradicting with Ap(z,z) = 1.
Take the expectation of inequality 1 over h € F, we get

Ener[An(z,y)] + Ener[An(y, 2)] > Ener[An(z, 2)] (2)
To conclude the proof we observe that for any x,y

Ehe]—'[Ah(x7 y)] =1- Sim(xv y)

Theorem 2.1 could be used to prove that locality sensitive hash function families do not
exist for certain set similarity measures. For example we can show that there is no locality
sensitive hash function family for the Dice’s coefficient defined as

: |AN B
$iMmpice(A, B) = —/—————
s(IAl+B])
and for the Overlap coefficient defined as
, _ |AnB]
st B) = ST 1B

Consider the sets A = {a}, B = {b}, C = {a,b}. For the Dice’s coefficient,

2 2
SiMpice(A, C) = 3 simpice(C, B) = 3 SiMpice(A, B) =0

(1 = simpice(A,C)) + (1 — simpiee(C, B)) < (1 — simp;ce(A, B))

Similarly for the Overlap coefficient:
Simovl(A, C) = 1, simOvl(C, B) = 1, Simovl(A, B) =0
(1 — Simovl(A, C)) + (1 — sz’mOvl(C, B)) < (1 — Simovl(A, B))

Sometimes it is desirable to have a hash function family that maps objects to 0 or 1. The
following theorem says that we can always obtain such a binary hash function family, with
some modification on the similarity measure.

Theorem 2.2 Given a locality sensitive hash function family F for sim(zx,y), we can obtain

another locality sensitive hash function family F that maps objects to {0,1} and corresponds
to the similarity function (1 + sim(z,y))/2.

Proof. Suppose we have a hash function family F such that
sim(z,y) = Probjer[h(x) = h(y)]

Let B be a pairwise independent family of hash functions that operate on the domain of the
functions in F and map elements in the domain to {0,1}. In other words for u,v in that
domain, Probyeg[b(u) = b(v)] = 1/2 if u # v, and Probyeg[b(u) = b(v)] = 1 if v = v. We
then consider the hash function family obtained by composing a hash function from F with
one from B. We denote it by F and show that it satisfies the requirements of this theorem.

Given two objects x,y. Fix h € F and b € B. With probability sim(z,y), h(z) = h(y)
and hence b(h(z)) = b(h(y)). With probability 1 — sim(z,y), h(z) # h(y) and in this case,
Probyes[b(h(x)) = b(h(y))] = 1/2. Thus,

Probuerpeslb(h(z)) = b(h(y))] = sim(z,y) + (1 = sim(z,y))/2
= (1+sim(z,y))/2

Theorem 2.2 can be used to prove a stronger condition for the existence of locality
sensitive hash function families. We need a definition first.

Definition 2.3 Given a collection X of objects. For any two objects x,y € X there is
a distance d(z,y). We say that d(x,y) is isometrically embeddable in the d-dimensional
Hamming cube if there exists a function f: X — {0,1}? such that for any x,y:

[f(2), f(y)l = C - d(z,y)
Here |u - v| is the Hamming distance between u and v and C' is a constant.

Now we prove the following stronger condition for the existence of locality sensitive hash
function families.

Theorem 2.4 For any similarity function sim(x,y) that admits a locality sensitive hash
function family, the distance function 1 — sim(x,y) is isometrically embeddable in the d-
dimensional Hamming cube for some integer d.

Proof. We first apply Theorem 2.2 to construct a binary locality sensitive hash function
family F for the similarity function (14 sim(z,y))/2. We arbitrarily order the hash functions
of F and call them hy,...,hs (so d = |F|). Given a object x, we map it to a binary
vector f(z) = (hi(x),...,hq(z)). Note that function f is an embedding of objects into the
Hamming cube. We only need to show that it is an isometric embedding of the distance
function 1 — sim(x,y).

Take any two objects x,y. f(x) = (hi(x),...,hqe(x)) and f(y) = (hi(y),..., hi(y)).
Recall that F has the following property (Theorem 2.2):

_ 1+ sim(z,y)

Probyes[h(x) # h(y)] 9

This means that the number of index i such that h;(x) # h;(y) is d(1 — (1 + sim(z,y))/2),
or equivalently,

|[f(2), f(y)l = d/2(1 — sim(z, y))

In view of the Definition 2.3, this proves that 1 — sim(x,y) is isometrically embeddable in
the Hamming cube. =

We comment that Theorem 2.4 has a weak converse, that is, any isometric embedding
of the distance function 1 — sim(z,y) in the Hamming cube yields a locality sensitive hash
function family corresponding to the similarity measure (a + sim(z,y))/(a+ 1) for some a.
Note that (a + sim(x,y))/(a+ 1) is in the range [o/(a + 1), 1].

3 Estimating Similarity of Vectors

We consider the following problem: given a set V of n vectors in R? and a query vector ¢,
decide if there exists a vector ¥ € V' such that sim(v,) > a where « is a constant (say 0.9).
In other words, the algorithm answers “yes” if such a vector exists and reports it, and “no”
otherwise. If we look at the probability of answering “yes” as a function of maxgey sim(7, q),
then it is a threshold function as shown on the left part of Figure 1. In the following we show
that by using locality sensitive hash functions we can approximate this threshold function.
In fact we are presenting a randomized algorithm that solves this problem with constant

probability.
Recall that in Section 1 we give a locality sensitive hash function family H for a collection
of vectors in R?. We take k functions hy, . . ., h; from H uniformly at random, for some integer

k. For a vector ¥ we concatenate the k bits obtained by applying these k functions to v. We
use g1 € HF to define this mapping, that is, ¢,(7) = (hi(?), ..., h(?)) € {0,1}*. We apply
g1 to each v € V' and call the resulting n vectors a group.

Prob Prob

0.9 Sim 0.9 Sim

Figure 1: Threshold function and its approximation.

For some integer [, we form [groups independently. They are defined by [functions
g1, - .., g During preprocessing we store ' with each g;(?), for 1 < j <.

To answer a query ¢, we compute ¢1(q), . .., gi(q). For each g;(¢) we identify those ¢’ such
that g;(v) = ¢;(¢). Then for each ¥ identified we test if sim(¥,q) > «. If this is the case
then we answer “yes” and report ¥. Otherwise we answer “no” after testing all the identified
vectors.

Let vy be the vector of V' that maximizes simgey (U, ¢), and let pg = sim(vy,). It is easy
to see that the above algorithm is correct when v is one of those vectors identified. What
is the probability for this to happen? We first look at g; and its k functions hq, ..., hy. For
each h;, Prob[h;(v) = hi(§)] = po. So Problg;(v0) = ¢1(§)] = pk. If g1(v5) = g1(§) then we
say that vy and ¢ agree on group ¢g;. So the probability that vg and ¢ do not agree on all
[groups is (1 — pf)!. Our algorithm is correct when vy and ¢ agree on at least one group,
which happens with probability 1 — (1 — pk)!. If we plot this probability as a function of p
(with fixed k and [), we get something similar to the right part of Figure 1.

If we modify the above algorithm such that we test vectors that agree with the query
on at least two groups, then the probability function becomes 1 — (1 — p§) — Ipk(1 — pf)i=1t.
This function looks similar to 1 — (1 — pf)!, but “sharper” than the latter. That is, this new
function moves from its low function value range (close to 0) to its high function value range
(close to 1) more quickly than the previous one.

4 Approximate Nearest Neighbor Searching

In this section we consider the approximate nearest neighbor searching problem. The problem
is as follows. Given a collection C of n objects from a base set U. Given a distance function
D(z,y) that operates on any two objects x,y € U. We want to preprocess C such that given
any on-line query ¢ € U, we can quickly find an (1 + €)-approximate nearest neighbor of ¢
in C. We call p* an (1 + ¢)-approximate nearest neighbor of ¢ if for any p € C, D(p*,q) <

(1+¢€)D(p,q). This is a general form of the problem. For example, we can let U be R%, C
be a set of n points, and D(x,y) be the Euclidean distance between points x and y.

The approximate nearest neighbor searching problem (and its variants) has a considerable
amount of literature. Here we list a couple of recent papers: Kleinberg [5], Indyk and
Motwani [4], Kushilevitz, Ostrovsky, and Rabani [6].

The approximate nearest neighbor searching problem considered in this Lecture (and the
next) is in the Hamming space. That is, U is H?, each point is a 0-1 vector in dimension d,
and D(z,y) is H(x,y) (the Hamming distance). We define the similarity between x and y
as: sim(xz,y) =1— H(x,y)/d. We also observe that locality sensitive hash function families
exist for this similarity measure. For example the following d functions hq, ..., hy constitute
such a family: h; maps € {0, 1} into its i-th bit.

We will be using the algorithm of Section 3. There we developped techniques for esti-
mating similarity between vectors, but it is easy to see that the same strategy applies to
other similarity measures as well. As a warm-up, we observe that by calling the algorithm
of Section 3 logd times we can get a 2-approximate nearest neighbor (with certain proba-
bility). In fact, it suffices to ask the following sequence of questions: is there a point whose
Hamming distance from the query is at most 17 at most 27 at most 47 and so on --- In
general the i-th question is: is there a point whose distance from the query is at most 2. To
answer this question we set a (the similarity threshold) to 1 — 2¢/d. The correctness of this
2-approximate nearest neighbor algorithm is obvious.

To solve the (1+ ¢)-approximate nearest neighbor problem we solve the following (71, 75)-
neighbor problem first, with r; < r5. The basic setting of this problem is the same as
the nearest neighbor problem. But in the (r1,73)-neighbor problem we want to distinguish
between the following two cases:

e Determine whether there exists a point p whose distance from the query is at most r;.
If yes, then return a point p’ whose distance from the query is at most 5.

e Determine whether all points are at distance more than ry from the query.

We show how to solve this (71, r3)-neighbor problem (with constant probability) in sublin-
ear time. In the next lecture we will use it to solve the (14 €)-approximate nearest neighbor
problem.

We use terminology from Section 3. For k and [specified later, we form [groups with
each group defined by k locality sensitive hash functions. As what we did in Section 3, we
compute ¢1(q), - .., ¢/(q) and test those p such that p agrees with ¢ in at least one group. In
order to obtain sublinear running time (we will see this later) we interrupt the search after
finding 2! points, including duplicates. Let pq,...,p; (t < 2[) be the points we encountered.
For each p; if it is within distance 7, from ¢ then we answer “yes” and return p;; we answer
“no” if all the points are at distance more than r, from ¢. It is easy to see that the algorithm
is correct if the following two properties hold with constant probability:

1. If there exists p such that D(p, q) <y then g;(p) = g,(q) for some j =1,...,1.

2. The total number of p such that D(p, q) > 75 and yet ¢;(p) = ¢;(¢) forsome j =1,...,1
is less than 21.

In the next lecture we will show that by picking appropriate values for k£ and [we can:
(1) make the desired probability lower bounded by a constant; (2) use this algorithm as a
sub-routine in approximate nearest neighbor searching to achieve sublinear query time.

References

[1] Broder, A.Z., Charikar, M., Frieze, A., Mitzenmacher, M. Min-wise independent permu-
tations, Proc. ACM STOC (1998), pp. 327 — 336.

[2] Charikar, M. Similarity estimation techniques from rounding algorithms, Proc. ACM
STOC (2002), To appear.

[3] Goemans, M.X., Williamson, D.P. Improved approzimation algorithms for mazimum cut
and satisfiability problems using semidefinite programming, J. ACM 42 (1995), 1115-1145.

[4] Indyk, P., Motwani, R. Approzimate nearest neighbors: Towards removing the curse of
dimensionality, Proc. ACM STOC (1998), 604-613.

[5] Kleinberg, J.M. Two algorithms for nearest-neighbor search in high dimensions, Proc.
ACM STOC (1997), 599-608.

(6] Kushilevitz, E., Ostrovsky, R., Rabani, Y. Efficient search for approzimate nearest neigh-
bor in high dimensional spaces, STAM J. COMPUT. 30 (2000), 457-474.

